This paper for the first time investigates the six-dimensional compliance characteristics of orthoplanar springs using a compliance-matrix based approach, and validates them with both finite element (FEM) simulation and experiments. The compliance matrix is developed by treating an orthoplanar spring as a parallel mechanism and is revealed to be diagonal. As a consequence, corresponding diagonal compliance elements are evaluated and analyzed in forms of their ratios, revealing that an orthoplanar spring not only has a large linear out-of-plane compliance but also has a large rotational bending compliance. Both FEM simulation and experiments were then conducted to validate the developed compliance matrix. In the FEM simulation, a total number of 30 types of planar-spring models were examined, followed by experiments that examined the typical side-type and radial-type planar springs, presenting a good agreement between the experiment results and analytical models. Further a planar-spring based continuum manipulator was developed to demonstrate the large-bending capability of its planar-spring modules.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley-Interscience
,
New York
.
2.
Parise
,
J. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2001
, “
Ortho-Planar Linear-Motion Springs
,”
Mech. Mach. Theory
,
36
(
11
), pp.
1281
1299
.
3.
Howell
,
L. L.
,
Thomson
,
S.
,
Briscoe
,
J. A.
,
Parise
,
J. J.
,
Lorenc
,
S.
,
Larsen
,
J. B.
,
Huffmire
,
C. R.
,
Burnside
,
N.
, and
Gomm
,
T. A.
,
2006
, “
Compliant, Ortho-Planar, Linear Motion Spring
,”
U.S. Patent No. 6,983,924
.
4.
Whiting
,
M. J.
,
Howell
,
L. L.
,
Todd
,
R. H.
,
Magleby
,
S. P.
,
Anderson
,
M. C.
, and
Rasmussen
,
N. O.
,
2008
, “
Continuously Variable Transmission or Clutch With Ortho-Planar Compliant Mechanism
,”
U.S. Patent No. 7,338,398
.
5.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
J. Mech. Rob.
,
2
(
1
), p.
011003
.
6.
Nguyen
,
N.-T.
,
Truong
,
T.-Q.
,
Wong
,
K.-K.
,
Ho
,
S.-S.
, and
Low
,
C. L.-N.
,
2004
, “
Micro Check Valves for Integration Into Polymeric Microfluidic Devices
,”
J. Micromech. Microeng.
,
14
(
1
), pp.
69
75
.
7.
Smal
,
O.
,
Dehez
,
B.
,
Raucent
,
B.
,
De Volder
,
M.
,
Peirs
,
J.
,
Reynaerts
,
D.
,
Ceyssens
,
F.
,
Coosemans
,
J.
, and
Puers
,
R.
,
2008
, “
Modeling, Characterization and Testing of an Ortho-Planar Micro-Valve
,”
J. Micro-Nano Mechatronics
,
4
(
3
), pp.
131
143
.
8.
Ataollahi
,
A.
,
Fallah
,
A. S.
,
Seneviratne
,
L. D.
,
Dasgupta
,
P.
, and
Althoefer
,
K.
,
2012
, “
Novel Force Sensing Approach Employing Prismatic-Tip Optical Fiber Inside an Orthoplanar Spring Structure
,”
IEEE/ASME Mechatronics
,
PP
(
99
), pp.
1
10
.
9.
Dimentberg
,
F. M. E.
,
1968
, “
The Screw Calculus and Its Applications in Mechanics
,”
Technical Report No. FTD-HT-23-1632-67
.
10.
Loncaric
,
J.
,
1985
, “
Geometrical Analysis of Compliant Mechanisms in Robotics (Euclidean Group, Elastic Systems, Generalized Springs)
,” M.S. dissertation, Harvard University Cambridge, MA.
11.
Patterson
,
T.
, and
Lipkin
,
H.
,
1993
, “
Structure of Robot Compliance
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
576
576
.
12.
Dai
,
J. S.
, and
Kerr
,
D.
,
2000
, “
A Six-Component Contact Force Measurement Device Based on the Stewart Platform
,”
Proc. Inst. Mech. Eng., Part C
,
214
(
5
), pp.
687
697
.
13.
Ciblak
,
N.
, and
Lipkin
,
H.
,
2003
, “
Design and Analysis of Remote Center of Compliance Structures
,”
J. Rob. Syst.
,
20
(
8
), pp.
415
427
.
14.
Su
,
H.-J.
,
Shi
,
H.
, and
Yu
,
J.
,
2012
, “
A Symbolic Formulation for Analytical Compliance Analysis and Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051009
.
15.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
16.
Schotborgh
,
W. O.
,
Kokkeler
,
F. G.
,
Tragter
,
H.
, and
van Houten
,
F. J.
,
2005
, “
Dimensionless Design Graphs for Flexure Elements and a Comparison Between Three Flexure Elements
,”
Precis. Eng.
,
29
(
1
), pp.
41
47
.
17.
Dai
,
J. S.
, and
Ding
,
X.
,
2006
, “
Compliance Analysis of a Three-Legged Rigidly-Connected Platform Device
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
755
764
.
18.
Ding
,
X.
, and
Dai
,
J. S.
,
2008
, “
Characteristic Equation-Based Dynamics Analysis of Vibratory Bowl Feeders With Three Spatial Compliant Legs
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
1
), pp.
164
175
.
19.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
966
982
.
20.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2013
, “
Cad-Based Approach for Identification of Elasto-Static Parameters of Robotic Manipulators
,”
Finite Elem. Anal. Des.
,
75
, pp.
19
30
.
21.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
, Vol.
6
,
McGraw-Hill
,
New York
.
22.
Dai
,
J. S.
,
2014
,
Geometrical Foundations and Screw Algebra for Mechanisms and Robotics
,
Higher Education Press
,
Beijing, China
(Translated From Dai, J. S., 2016, Screw Algebra and Kinematic Approaches for Mechanisms and Robotics, Springer, London, UK).
23.
Dai
,
J. S.
,
2016
,
Screw Algebra and Kinematic Approaches for Mechanisms and Robotics
,
Springer
,
London
.
24.
Murray
,
R. M.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
25.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
26.
Qi
,
P.
,
Qiu
,
C.
,
Liu
,
H. B.
,
Dai
,
J. S.
,
Seneviratne
,
L.
, and
Althoefer
,
K.
,
2014
, “
A Novel Continuum-Style Robot With Multilayer Compliant Modules
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
3175
3180
.
27.
Qi
,
P.
,
Qiu
,
C.
,
Liu
,
H.
,
Dai
,
J.
,
Seneviratne
,
L.
, and
Althoefer
,
K.
,
2015
, “
A Novel Continuum Manipulator Design Using Serially Connected Double-Layer Planar Springs
,”
IEEE/ASME Trans. Mechatronics
,
PP
(
99
), pp.
1
1
.
28.
Gravagne
,
I. A.
, and
Walker
,
I. D.
,
2000
, “
On the Kinematics of Remotely-Actuated Continuum Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA '00
), San Francisco, CA, Apr. 24–28, Vol.
3
, pp.
2544
2550
.
29.
Gravagne
,
I. A.
,
Rahn
,
C. D.
, and
Walker
,
I. D.
,
2003
, “
Large Deflection Dynamics and Control for Planar Continuum Robots
,”
IEEE/ASME Trans. Mechatronics
,
8
(
2
), pp.
299
307
.
30.
Xu
,
P.
,
Jun
,
Y. J.
,
Hua
,
Z. G.
, and
Sheng
,
B. S.
,
2008
, “
The Stiffness Model of Leaf-Type Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082303
.
31.
Martin
,
J.
, and
Robert
,
M.
,
2011
, “
Novel Flexible Pivot With Large Angular Range and Small Center Shift to Be Integrated Into a Bio-Inspired Robotic Hand
,”
J. Intell. Mater. Syst. Struct.
,
22
(
13
), pp.
1431
1437
.
You do not currently have access to this content.