In the United States, the greatest decline in the number of students in the STEM education pipeline occurs at the university level, where students, who were initially interested in STEM fields, drop-out or move on to other interests. It has been reported that “of the 23 most commonly cited reasons for switching out of STEM, all but 7 had something to do with the pedagogical experience.” Thus, understanding the characteristics of the pedagogical experience that impact students' interest in STEM is of great importance to the academic community. This work tests the hypothesis that there exists a correlation between the semantic structure of lecture content and students' affective states. Knowledge gained from testing this hypothesis will inform educators of the specific semantic structure of lecture content that enhance students' affective states and interest in course content, toward the goal of increasing STEM retention rates and overall positive experiences in STEM majors. A case study involving a series of science and engineering based digital content is used to create a semantic network and demonstrate the implications of the methodology. The results reveal that affective states such as engagement and boredom are consistently strongly correlated to the semantic network metrics outlined in the paper, while the affective state of confusion is weakly correlated with the same semantic network metrics. The results reveal semantic network relationships that are generalizable across the different textually derived information sources explored. These semantic network relationships can be explored by researchers trying to optimize their message structure in order to have its intended effect.

References

References
1.
“Increasing the Number of STEM Graduates: Insights From the U.S. STEM Education and Modeling Project BHEF,” Last accessed Jan. 10, 2016, http://www.bhef.com/publications/increasing-number-stem-graduates-insights-us-stem-education-modeling-project
2.
Burton
,
L.
,
Seymour
,
E.
, and
Hewitt
,
N. M.
,
1998
, “
Talking about Leaving: Why Undergraduates Leave the Sciences
,”
Higher Education
,
36
(
1
), pp.
115
116
.
3.
Schutz
,
P. A.
, and
Lanehart
,
S. L.
,
2002
, “
Introduction: Emotions in Education
,”
Educ. Psychol.
,
37
(
2
), pp.
67
68
.
4.
Singh
,
K.
,
Granville
,
M.
, and
Dika
,
S.
,
2002
, “
Mathematics and Science Achievement: Effects of Motivation, Interest, and Academic Engagement
,”
J. Educ. Res.
,
95
(
6
), pp.
323
332
.
5.
Crilly
,
N.
,
Moultrie
,
J.
, and
Clarkson
,
P. J.
,
2004
, “
Seeing Things: Consumer Response to the Visual Domain in Product Design
,”
Des. Stud.
,
25
(
6
), pp.
547
577
.
6.
Govers
,
P. C. M.
,
Hekkert
,
P.
, and
Schoormans
,
J. P. L.
,
2003
, “
Happy, Cute and Tough: Can Designers Create a Product Personality That Consumers Understand
,”
Design and Emotion, The Experience of Everyday Things
, P. Hekkert , J. van Erp, and D. Gyi, eds.,
CRC Press
,
Boca Raton, FL
, pp.
345
349
.
7.
Nagamachi
,
M.
,
1995
, “
Kansei Engineering: A New Ergonomic Consumer-Oriented Technology for Product Development
,”
Int. J. Ind. Ergon.
,
15
(
1
), pp.
3
11
.
8.
Nagamachi
,
M.
,
2002
, “
Kansei Engineering as a Powerful Consumer-Oriented Technology for Product Development
,”
Appl. Ergon.
,
33
(
3
), pp.
289
294
.
9.
Pour
,
P. A.
,
Hussain
,
M. S.
,
AlZoubi
,
O.
,
D'Mello
,
S.
, and
Calvo
,
R. A.
,
2010
, “
The Impact of System Feedback on Learners' Affective and Physiological States
,”
Intelligent Tutoring Systems
,
Springer
,
Berlin, Heidelberg
, pp.
264
273
.
10.
Marchand
,
G. C.
, and
Gutierrez
,
A. P.
,
2012
, “
The Role of Emotion in the Learning Process: Comparisons Between Online and Face-to-Face Learning Settings
,”
Internet Higher Educ.
,
15
(
3
), pp.
150
160
.
11.
Gal
,
I.
, and
Ginsburg
,
L.
,
1994
, “
The Role of Beliefs and Attitudes in Learning Statistics: Towards an Assessment Framework
,”
J. Stat. Educ.
,
2
(
2
), pp.
1
15
.
12.
Craig
,
S.
,
Graesser
,
A.
,
Sullins
,
J.
, and
Gholson
,
B.
,
2004
, “
Affect and Learning: An Exploratory Look Into the Role of Affect in Learning With AutoTutor
,”
J. Educ. Media
,
29
(
3
), pp.
241
250
.
13.
Csikszentmihalyi
,
M.
,
2014
, “
Toward a Psychology of Optimal Experience
,”
Flow and the Foundations of Positive Psychology
,
Springer
,
The Netherlands
, pp.
209
226
.
14.
Akey
,
T. M.
,
2006
, “
School Context, Student Attitudes and Behavior, and Academic Achievement: An Exploratory Analysis
,” MDRC, New York.
15.
Kort
,
B.
,
Reilly
,
R.
, and
Picard
,
R. W.
,
2001
, “
An Affective Model of Interplay Between Emotions and Learning: Reengineering Educational Pedagogy-Building a Learning Companion
,”
IEEE
International Conference on Advanced Learning Technologies
, p.
0043
.
16.
Baker
,
R. Sj.
,
D'Mello
,
S. K.
,
Rodrigo
,
M. M. T.
, and
Graesser
,
A. C.
,
2010
, “
Better to Be Frustrated Than Bored: The Incidence, Persistence, and Impact of Learners' Cognitive–Affective States During Interactions With Three Different Computer-Based Learning Environments
,”
Int. J. Human-Comput. Stud.
,
68
(
4
), pp.
223
241
.
17.
D'Mello
,
S.
, and
Graesser
,
A.
,
2014
, “
Confusion and Its Dynamics During Device Comprehension With Breakdown Scenarios
,”
Acta Psychol.
,
151
, pp.
106
116
.
18.
Kumar
,
A.
,
Olshavsky
,
R. W.
, and
King
,
M. F.
,
2001
, “
Exploring Alternative Antecedents of Customer Delight
,”
J. Consum. Satisfaction Dissatisfaction Complaining Behav.
,
14
, pp.
14
26
.
19.
Dong
,
A.
,
2005
, “
The Latent Semantic Approach to Studying Design Team Communication
,”
Des. Stud.
,
26
(
5
), pp.
445
461
.
20.
Dong
,
A.
,
Hill
,
A. W.
, and
Agogino
,
A. M.
,
2004
, “
A Document Analysis Method for Characterizing Design Team Performance
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
378
385
.
21.
Li
,
Z.
, and
Ramani
,
K.
,
2007
, “
Ontology-Based Design Information Extraction and Retrieval
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
21
(02), pp.
137
154
.
22.
Ghani
,
R.
,
Probst
,
K.
,
Liu
,
Y.
,
Krema
,
M.
, and
Fano
,
A.
,
2006
, “
Text Mining for Product Attribute Extraction
,”
SIGKDD Explor. Newsl.
,
8
(
1
), pp.
41
48
.
23.
Liang
,
Y.
, and
Tan
,
R.
,
2007
, “
A Text-Mining-Based Patent Analysis in Product Innovative Process
,”
Trends in Computer Aided Innovation
, N. León-Rovira, ed.,
Springer
, pp.
89
96
.
24.
Kang
,
S. W.
,
Sane
,
C.
,
Vasudevan
,
N.
, and
Tucker
,
C. S.
,
2014
, “
Product Resynthesis: Knowledge Discovery of the Value of End-of-Life Assemblies and Subassemblies
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011004
.
25.
Glier
,
M. W.
,
McAdams
,
D. A.
, and
Linsey
,
J. S.
,
2014
, “
Exploring Automated Text Classification to Improve Keyword Corpus Search Results for Bioinspired Design
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111103
.
26.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of ‘Near’ and ‘Far’: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
27.
Stone
,
T.
, and
Choi
,
S.-K.
,
2013
, “
Extracting Consumer Preference From User-Generated Content Sources Using Classification
,”
ASME
Paper No. DETC2013-13228.
28.
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2012
, “
On Design Preference Elicitation With Crowd Implicit Feedback
,”
ASME
Paper No. DETC2012-70605.
29.
Rai
,
R.
,
2012
, “
Identifying Key Product Attributes and Their Importance Levels From Online Customer Reviews
,”
ASME
Paper No. DETC2012-70493.
30.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031003
.
31.
Tucker
,
C.
,
Pursel
,
B.
, and
Divinsky
,
A.
,
2014
, “
Mining Student-Generated Textual Data in MOOCS And Quantifying Their Effects on Student Performance and Learning Outcomes
,”
ASEE Comput. Educ. J. (CoEd)
,
5
(
4
), pp.
84
95
.
32.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
Automated Discovery of Lead Users and Latent Product Features by Mining Large Scale Social Media Networks
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071402
.
33.
Griffiths
,
T.
, and
Steyvers
,
M.
,
2002
, “
A Probabilistic Approach to Semantic Representation
,”
24th Annual Conference of the Cognitive Science Society
, pp.
381
386
.
34.
Behoora
,
I.
, and
Tucker
,
C.
,
2015
, “
Machine Learning Classification of Design Team Members' Body Language Patterns for Real Time Emotional State Detection
,”
Des. Stud.
,
39
(
1
), pp.
100
127
.
35.
Hoser
,
B.
,
Hotho
,
A.
,
Jäschke
,
R.
,
Schmitz
,
C.
, and
Stumme
,
G.
,
2006
,
Semantic Network Analysis of Ontologies
, Y. Sure and J. Domingue, eds.,
Springer
,
Berlin, Heidelberg
.
36.
Danowski
,
J. A.
,
1993
, “
Network Analysis of Message Content
,”
Prog. Commun. Sci.
,
12
, pp.
198
221
.
37.
Clauset
,
A.
,
Newman
,
M. E.
, and
Moore
,
C.
,
2004
, “
Finding Community Structure in Very Large Networks
,”
Phys. Rev. E
,
70
(
6
), p.
066111
.
38.
Scott
,
J.
, and
Carrington
,
P. J.
,
2011
,
The SAGE Handbook of Social Network Analysis
,
SAGE Publications
,
Thousand Oaks, CA
.
39.
Borgatti
,
S. P.
,
Mehra
,
A.
,
Brass
,
D. J.
, and
Labianca
,
G.
,
2009
, “
Network Analysis in the Social Sciences
,”
Science
,
323
(
5916
), pp.
892
895
.
40.
Hansen
,
D.
,
Shneiderman
,
B.
, and
Smith
,
M. A.
,
2010
,
Analyzing Social Media Networks With NodeXL: Insights From a Connected World
,
Morgan Kaufmann
,
San Francisco, CA
.
41.
Estrada
,
E.
, and
Rodriguez-Velazquez
,
J. A.
,
2005
, “
Subgraph Centrality in Complex Networks
,”
Phys. Rev. E
,
71
(
5
), p.
056103
.
42.
Fernandez-Ballesteros
,
R.
,
2004
, “
Self-Report Questionnaires
,”
Comprehensive Handbook of Psychological Assessment
, Vol.
3
,
Wiley
,
Hoboken, NJ
, pp.
194
221
.
43.
Han
,
J.
, and
Kamber
,
M.
,
2006
,
Data Mining, Southeast Asia Edition: Concepts and Techniques
,
Morgan Kaufmann
,
San Francisco, CA
.
44.
Salkind
,
N. J.
,
2006
,
Encyclopedia of Measurement and Statistics
,
Sage Publications
,
Thousand Oaks, CA
.
45.
Cohen
,
J.
,
Cohen
,
P.
,
West
,
S. G.
, and
Aiken
,
L. S.
,
2013
,
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
,
L. Erlbaum Associates
,
Mahweh, NJ
.
46.
Gross
,
J. J.
, and
John
,
O. P.
,
2003
, “
Individual Differences in Two Emotion Regulation Processes: Implications for Affect, Relationships, and Well-Being
,”
J. Pers. Soc. Psychol.
,
85
(
2
), pp.
348
362
.
47.
Dixson
,
M. D.
,
2012
, “
Creating Effective Student Engagement in Online Courses: What do Students Find Engaging?
,”
J. Scholarship Teach. Learn.
,
10
(
2
), pp.
1
13
.
48.
Zywica
,
J.
, and
Danowski
,
J.
,
2008
, “
The Faces of Facebookers: Investigating Social Enhancement and Social Compensation Hypotheses; Predicting Facebook TM and Offline Popularity From Sociability and Self-Esteem, and Mapping the Meanings of Popularity With Semantic Networks
,”
J. Comput.-Mediated Commun.
,
14
(
1
), pp.
1
34
.
49.
Smith
,
R. A.
, and
Parrott
,
R. L.
,
2011
, “
Mental Representations of HPV in Appalachia: Gender, Semantic Network Analysis, and Knowledge Gaps
,”
J. Health Psychol.
, p.
1359105311428534
.
50.
Drieger
,
P.
,
2013
, “
Semantic Network Analysis as a Method for Visual Text Analytics
,”
Proc.-Social Behav. Sci.
,
79
, pp.
4
17
.
51.
Marsh
,
H. W.
,
1987
, “
Students' Evaluations of University Teaching: Research Findings, Methodological Issues, and Directions for Future Research
,”
Int. J. Educ. Res.
,
11
(
3
), pp.
253
388
.
52.
Hazelrigg
,
G. A.
,
1996
, “
The Implications of Arrow's Impossibility Theorem on Approaches to Optimal Engineering Design
,”
ASME J. Mech. Des.
,
118
(
2
), pp.
161
164
.
You do not currently have access to this content.