Additive manufacturing (AM) has evolved from prototyping to functional part fabrication for a wide range of applications. Challenges exist in developing new product design methodologies to utilize AM-enabled design freedoms while limiting costs at the same time. When major design changes are made to a part, undesired high cost increments may be incurred due to significant adjustments of AM process settings. In this research, we introduce the concept of an additive manufactured variable product platform and its associated process setting platform. Design and process setting adjustments based on a reference part are constrained within a bounded feasible space (FS) in order to limit cost increments. In this paper, we develop a cost-driven design methodology for product families implemented with additive manufactured variable platforms. A fuzzy time-driven activity-based costing (FTDABC) approach is introduced to estimate AM production costs based on process settings. Time equations in the FTDABC are computed in a trained adaptive neuro-fuzzy inference system (ANFIS). The process setting adjustment's FS boundary is identified by solving a multi-objective optimization problem. Variable platform design parameter limitations are computed in a Mamdani-type expert system, and then used as constraints in the design optimization to maximize customer perceived utility. Case studies on designing an R/C racing car family illustrate the proposed methodology and demonstrate that the optimized additive manufactured variable platforms can improve product performances at lower costs than conventional consistent platform-based design.

References

References
1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
2.
Bourell
,
D. L.
,
Rosen
,
D. W.
, and
Leu
,
M. C.
,
2014
, “
The Roadmap for Additive Manufacturing and Its Impact
,”
3D Print. Addit. Manuf.
,
1
(
1
), pp.
6
9
.
3.
Simpson
,
T. W.
,
Jiao
,
J.
,
Siddique
,
Z.
, and
Hölttä-Otto
,
K.
,
2014
,
Advances in Product Family and Product Platform Design
,
Springer
,
New York
.
4.
Moon
,
S. K.
,
Park
,
K.
, and
Simpson
,
T.
,
2014
, “
Platform Design Variable Identification for a Product Family Using Multi-Objective Particle Swarm Optimization
,”
Res. Eng. Des.
,
25
(
2
), pp.
95
108
.
5.
Song
,
B.
,
Dong
,
S.
,
Deng
,
S.
,
Liao
,
H.
, and
Coddet
,
C.
,
2014
, “
Microstructure and Tensile Properties of Iron Parts Fabricated by Selective Laser Melting
,”
Opt. Laser Technol.
,
56
(0), pp.
451
460
.
6.
Cheng
,
W.
,
Fuh
,
J. Y. H.
,
Nee
,
A. Y. C.
,
Wong
,
Y. S.
,
Loh
,
H. T.
, and
Miyazawa
,
T.
,
1995
, “
Multi-Objective Optimization of Part-Building Orientation in Stereolithography
,”
Rapid Prototyping J.
,
1
(
4
), pp.
12
23
.
7.
Canellidis
,
V.
,
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2009
, “
Genetic-Algorithm-Based Multi-Objective Optimization of the Build Orientation in Stereolithography
,”
Int. J. Adv. Manuf. Technol.
,
45
(
7–8
), pp.
714
730
.
8.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2011
, “
Multi-Objective Optimization of Selective Laser Sintering Processes for Surface Quality and Energy Saving
,”
Proc. Inst. Mech. Eng., Part B
,
225
(
B9
), pp.
1673
1682
.
9.
Verma
,
A.
, and
Rai
,
R.
,
2013
, “
Energy Efficient Modeling and Optimization of Additive Manufacturing Processes
,”
Solid Freeform Fabrication Symposium
, Austin, TX.
10.
Hopkinson
,
N.
, and
Dickens
,
P.
,
2003
, “
Analysis of Rapid Manufacturing—Using Layer Manufacturing Processes for Production
,”
Proc. Inst. Mech. Eng., Part C
,
217
(
1
), pp.
31
39
.
11.
Ruffo
,
M.
,
Tuck
,
C.
, and
Hague
,
R.
,
2006
, “
Cost Estimation for Rapid Manufacturing—Laser Sintering Production for Low to Medium Volumes
,”
Proc. Inst. Mech. Eng., Part B
,
220
(
9
), pp.
1417
1427
.
12.
Atzeni
,
E.
, and
Salmi
,
A.
,
2012
, “
Economics of Additive Manufacturing for End-Usable Metal Parts
,”
Int. J. Adv. Manuf. Technol.
,
62
(
9–12
), pp.
1147
1155
.
13.
Lindemann
,
C.
,
Jahnke
,
U.
,
Moi
,
M.
, and
Koch
,
R.
,
2013
, “
Impact and Influence Factors of Additive Manufacturing on Product Lifecycle Costs
,”
Solid Freeform Fabrication Symposium
, Austin, TX.
14.
Lindemann
,
C.
,
Jahnke
,
U.
,
Moi
,
M.
, and
Koch
,
R.
,
2012
, “
Analyzing Product Lifecycle Costs for a Better Understanding of Cost Drivers in Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
, Austin, TX.
15.
Yim
,
S.
, and
Rosen
,
D.
,
2012
, “
Build Time and Cost Models for Additive Manufacturing Process Selection
,”
ASME
Paper No. DETC2012-70940.
16.
Williams
,
C.
,
Allen
,
J.
,
Rosen
,
D. W.
, and
Mistree
,
F.
,
2006
, “
Process Parameter Platform Design to Manage Workstation Capacity
,”
Product Platform and Product Family Design
,
T.
Simpson
,
Z.
Siddique
, and
R. J.
Jiao
, eds.,
Springer
,
New York
, pp.
421
455
.
17.
Luo
,
X.
,
Yang
,
W.
,
Kwong
,
C.
,
Tang
,
J.
, and
Tang
,
J.
,
2014
, “
Linear Programming Embedded Genetic Algorithm for Product Family Design Optimization With Maximizing Imprecise Part-Worth Utility Function
,”
Concurrent Eng.
,
22
(
4
), pp.
309
319
.
18.
Weck
,
O. L. D.
,
Suh
,
E. S.
, and
Chang
,
D.
,
2003
, “
Product Family and Platform Portfolio Optimization
,”
ASME
Paper No. DETC03/DAC-48721.
19.
Chowdhury
,
S.
,
Messac
,
A.
, and
Khire
,
R. A.
,
2011
, “
Comprehensive Product Platform Planning (CP3) Framework
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101004
.
20.
Jiao
,
J.
,
Zhang
,
Y.
, and
Wang
,
Y.
,
2007
, “
A Generic Genetic Algorithm for Product Family Design
,”
J. Intell. Manuf.
,
18
(
2
), pp.
233
247
.
21.
Suh
,
E.
,
De Weck
,
O.
, and
Chang
,
D.
,
2007
, “
Flexible Product Platforms: Framework and Case Study
,”
Res. Eng. Des.
,
18
(
2
), pp.
67
89
.
22.
Wang
,
L.
,
Song
,
B.
,
Li
,
X.
, and
Ng
,
W. K.
,
2007
, “
A Product Family Based Life Cycle Cost Model for Part Variety and Change Analysis
,”
International Conference on Engineering Design (ICED'07)
, Paris, France, Paper No. DS14_P_152.
23.
Bryan
,
A.
,
Wang
,
H.
, and
Abell
,
J.
,
2013
, “
Concurrent Design of Product Families and Reconfigurable Assembly Systems
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051001
.
24.
Simpson
,
T.
,
Siddique
,
Z.
, and
Jiao
,
J.
,
2006
, “
Platform-Based Product Family Development
,”
Product Platform and Product Family Design
,
T.
Simpson
,
Z.
Siddique
, and
R. J.
Jiao
, eds.,
Springer
,
New York
, pp.
1
15
.
25.
Kaplan
,
R. S.
, and
Anderson
,
S. R.
,
2004
, “
Time-Driven Activity-Based Costing
,”
Harv. Bus. Rev.
,
82
(
11
), pp.
131
140
.
26.
Chansaad
,
A.
,
Rattanamanee
,
W.
,
Chaiprapat
,
A.
, and
Yenradee
,
P.
,
2012
, “
Fuzzy Time-Driven Activity-Based Costing Model in an Uncertain Manufacturing Environment
,”
Asia Pacific Industrial Engineering and Management Systems Conference
, Phuket, Thailand.
27.
Sarokolaei
,
M. A.
,
Saviz
,
M.
,
Moradloo
,
M. F.
, and
Dahaj
,
N. S.
,
2013
, “
Time Driven Activity Based Costing by Using Fuzzy Logics
,”
Procedia–Soc. Behav. Sci.
,
75
(0), pp.
338
345
.
28.
Dadbakhsh
,
S.
,
Hao
,
L.
,
Jerrard
,
P. G. E.
, and
Zhang
,
D. Z.
,
2012
, “
Experimental Investigation on Selective Laser Melting Behaviour and Processing Windows of In Situ Reacted Al/Fe2O3 Powder Mixture
,”
Powder Technol.
,
231
(0), pp.
112
121
.
29.
Leekwijck
,
W. V.
, and
Kerre
,
E. E.
,
1999
, “
Defuzzification: Criteria and Classification
,”
Fuzzy Sets Syst.
,
108
(
2
), pp.
159
178
.
30.
Jang
,
J. S. R.
,
1993
, “
Anfis: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst., Man Cybernetics
,
23
(
3
), pp.
665
685
.
31.
Verma
,
A.
, and
Rai
,
R.
,
2014
, “
Computational Geometric Solutions for Efficient Additive Manufacturing Process Planning
,”
ASME
Paper No. DETC2014-34067.
32.
Babuška
,
R.
,
2003
, “
Neuro-Fuzzy Methods for Modeling and Identification
,”
Recent Advances in Intelligent Paradigms and Applications
,
A.
Abraham
,
L. C.
Jain
, and
J.
Kacprzyk
, eds.,
Physica-Verlag HD
,
Heidelberg, Germany
, pp.
161
186
.
33.
“Willit3dprint,” last accessed July 13,
2015
, http://www.willit3dprint.com/
34.
Konak
,
A.
,
Coit
,
D. W.
, and
Smith
,
A. E.
,
2006
, “
Multi-Objective Optimization Using Genetic Algorithms: A Tutorial
,”
Reliab., Eng. Syst. Saf.
,
91
(
9
), pp.
992
1007
.
35.
Hague
,
R.
,
Mansour
,
S.
, and
Saleh
,
N.
,
2004
, “
Material and Design Considerations for Rapid Manufacturing
,”
Int. J. Prod. Res.
,
42
(
22
), pp.
4691
4708
.
36.
Samperi
,
M.
,
Chernow
,
E.
,
Simpson
,
T. W.
,
Joshi
,
S.
, and
Talbot
,
M.
,
2013
, “
Towards a Process Workflow for Designing and Fabricating Parts Using Additive Manufacturing
,”
2013 RAPID Conference and Exposition
, Pittsburgh, PA, June 10–13, Paper No. 64832.
37.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
(0), pp.
632
637
.
38.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2013
, “
Identification on Some Design Key Parameters for Additive Manufacturing: Application on Electron Beam Melting
,”
Procedia CIRP
,
7
(0), pp.
264
269
.
39.
Train
,
K. E.
,
2009
,
Discrete Choice Methods With Simulation
,
Cambridge University Press
,
Cambridge, UK
.
40.
“Traxxas Products,” last accessed Jan. 22,
2015
, http://traxxas.com/products
41.
Rosen
,
D. W.
,
2014
, “
Research Supporting Principles for Design for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
9
(
4
), pp.
225
232
.
42.
Moon
,
S. K.
,
Tan
,
Y.
,
Hwang
,
J.
, and
Yoon
,
Y.-J.
,
2014
, “
Application of 3D Printing Technology for Designing Light-Weight Unmanned Aerial Vehicle Wing Structures
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
1
(
3
), pp.
223
228
.
You do not currently have access to this content.