In this effort, we present novel nonlinear modeling of two solenoid actuated butterfly valves subject to a sudden contraction and then develop an optimal configuration in the presence of highly coupled nonlinear dynamics. The valves are used in the so-called smart systems employed in a wide range of applications including bioengineering, medicine, and engineering fields. Typically, thousands of the actuated valves operate together to regulate the amount of flow and also to avoid probable catastrophic disasters which have been observed in practice. We focus on minimizing the amount of energy used in the system as one of the most critical design criteria to yield an efficient operation. We optimize the actuation subsystems interacting with the highly nonlinear flow loads in order to minimize the amount of energy consumed. The contribution of this work is the inclusion of coupled nonlinearities of electromechanical valve systems to optimize the actuation units. Stochastic, heuristic, and gradient based algorithms are utilized in seeking the optimal design of two sets. The results indicate that substantial amount of energy can be saved by an intelligent design that helps select parameters carefully and also uses flow torques to augment the closing efforts.

References

References
1.
Hughes
,
R.
,
Balestrini
,
S.
,
Kelly
,
K.
,
Weston
,
N.
, and
Mavris
,
D.
,
2006
, “
Modeling of an Integrated Reconfigurable Intelligent System (IRIS) for Ship Design
,” 2006
ASNE
Ship and Ship Systems Technology (S3T) Symposium
.
2.
Lequesne
,
B.
,
Henry
,
R.
, and
Kamal
,
M.
,
1998
, “
Magnavalve: A New Solenoid Configuration Based on a Spring-Mass Oscillatory System for Engine Valve Actuation
,” GM Research Report No. E3-89.
3.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2011
, “
Nonlinear Mathematical Modeling of Butterfly Valves Driven by Solenoid Actuators
,”
J. Appl. Math. Modell.
,
35
(
5
), pp.
2324
2335
.
4.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2012
, “
Transient Chaos and Crisis Phenomena in Butterfly Valves Driven by Solenoid Actuators
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
11
), pp.
4336
4345
.
5.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2013
, “
Optimal Design of Solenoid Actuators Driving Butterfly Valves
,”
ASME J. Mech. Des.
,
135
(
9
), p.
094501
.
6.
Naseradinmousavi
,
P.
,
2015
, “
A Novel Nonlinear Modeling and Dynamic Analysis of Solenoid Actuated Butterfly Valves Coupled in Series
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
1
), p.
014505
.
7.
Belato
,
D.
,
Weber
,
H. I.
,
Balthazar
,
J. M.
, and
Mook
,
D. T.
,
2001
, “
Chaotic Vibrations of a Nonideal Electro-Mechanical System
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
1699
1706
.
8.
Xie
,
W. C.
,
Lee
,
H. P.
, and
Lim
,
S. P.
,
2003
, “
Nonlinear Dynamic Analysis of MEMS Switches by Nonlinear Modal Analysis
,”
J. Nonlinear Dyn.
,
31
(
3
), pp.
243
256
.
9.
Boivin
,
N.
,
Pierre
,
C.
, and
Shaw
,
S. W.
,
1995
, “
Non-Linear Normal Modes, Invariance, and Modal Dynamics Approximations of Non-Linear Systems
,”
J. Nonlinear Dyn.
,
8
(
3
), pp.
315
346
.
10.
Ge
,
Z. M.
, and
Lin
,
T. N.
,
2003
, “
Chaos, Chaos Control and Synchronization of Electro-Mechanical Gyrostat System
,”
J. Sound Vib.
,
259
(
3
), pp.
585
603
.
11.
Baek-Ju
,
S.
, and
Eun-Woong
,
L.
,
2005
, “
Optimal Design and Speed Increasing Method of Solenoid Actuator Using a Non-Magnetic Ring
,”
International Conference on Power Electronics and Drives Systems
(
PEDS
), pp.
1140
1145
.
12.
Hameyer
,
K.
, and
Nienhaus
,
M.
,
2002
, “
Electromagnetic Actuator-Current Developments and Examples
,”
8th International Conference on New Actuators
, pp.
170
175
.
13.
Sung
,
B. J.
,
Lee
,
E. W.
, and
Kim
,
H. E.
,
2002
, “
Development of Design Program for On and Off Type Solenoid Actuator
,”
KIEE Summer Annual Conference
, Vol.
B
, pp.
929
931
.
14.
Kajima
,
T.
,
1995
, “
Dynamic Model of the Plunger Type Solenoids at Deenergizing State
,”
IEEE Trans. Magn.
,
31
(
3
), pp.
2315
2323
.
15.
Scott
,
D. A.
,
Karr
,
C. L.
, and
Schinstock
,
D. E.
,
1999
, “
Genetic Algorithm Frequency-Domain Optimization of an Anti-Resonant Electromechanical Controller
,”
Eng. Appl. Artificial Intell.
,
12
(
2
), pp.
201
211
.
16.
Mahdi
,
S. A.
,
2014
, “
Optimization of PID Controller Parameters Based on Genetic Algorithm for Non-Linear Electromechanical Actuator
,”
Int. J. Comput. Appl.
,
94
(
3
), pp.
11
20
.
17.
Jimenez-Octavio
,
J. R.
,
Pil
,
E.
,
Lopez-Garcia
,
O.
, and
Carnicero
,
A.
,
2006
, “
Coupled Electromechanical Cost Optimization of High Speed Railway Overheads
,”
ASME
Paper No. JRC2006-94023.
18.
Nowak
,
L.
,
2010
, “
Optimization of the Electromechanical Systems on the Basis of Coupled Field-Circuit Approach
,”
Int. J. Comput. Math. Electr. Electron. Eng.
,
20
(
1
), pp.
39
52
.
19.
Marquardt
,
D.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
,
11
(
2
), pp.
431
441
.
20.
Messine
,
F.
,
Nogarede
,
B.
, and
Lagouanelle
,
J. L.
,
1998
, “
Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization
,”
IEEE Trans. Magn.
,
34
(
1
), pp.
299
308
.
21.
Kelley
,
C. T.
,
1999
, “
Iterative Methods for Optimization
,”
Frontiers in Applied Mathematics
, Vol.
18
,
SIAM
,
Philadelphia, PA
.
22.
Sefkat
,
G.
,
2009
, “
The Design Optimization of the Electromechanical Actuator
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
635
644
.
23.
Abergel
,
J.
,
Allain
,
M.
,
Michaud
,
H.
,
Cueff
,
M.
,
Ricart
,
T.
,
Dieppedale
,
C.
,
Rhun
,
G. L.
,
Faralli
,
D.
,
Fanget
,
S.
, and
Defay
,
E.
,
2012
, “
Optimized Gradient-Free PZT Thin Films for Micro-Actuators
,”
2012 IEEE International Ultrasonics Symposium
(
IUS
),
Dresden
,
Germany
, Oct. 7–10, pp. 972–974.
24.
Chakraborty
,
I.
,
Trawick
,
D. R.
,
Jackson
,
D.
, and
Mavris
,
D.
,
2013
, “
Electric Control Surface Actuator Design Optimization and Allocation for the More Electric Aircraft
,”
AIAA
Paper No. 2013-4283.
25.
Medhat
,
A.
, and
Youssef
,
M.
,
2013
, “
Optimized PID Tracking Controller for Piezoelectric Hysteretic Actuator Model
,”
World J. Modell. Simul.
,
9
(
3
), pp.
223
234
.
26.
Naseradinmousavi
,
P.
,
2012
, “
Nonlinear Modeling, Dynamic Analysis, and Optimal Design and Operation of Electromechanical Valve Systems
,”
Ph.D. thesis
, Villanova University, Villanova, PA.
27.
Bennett
,
C. O.
, and
Myers
,
J. E.
,
1962
,
Momentum, Heat, and Mass Transfer
,
McGraw-Hill
,
New York
.
28.
Massey
,
B. S.
, and
Ward-Smith
,
J.
,
1998
,
Mechanics of Fluids
,
7th ed.
,
Taylor & Francis
,
London/New York
.
29.
American Water Works Association
,
2012
,
Butterfly Valves: Torque, Head Loss, and Cavitation Analysis
,
2nd ed.
,
AWWA
,
Denver, CO
.
30.
Park
,
J. Y.
, and
Chung
,
M. K.
,
2006
, “
Study on Hydrodynamic Torque of a Butterfly Valve
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
190
195
.
31.
Leutwyler
,
Z.
, and
Dalton
,
C.
,
2008
, “
A CFD Study of the Flow Field, Resultant Force, and Aerodynamic Torque on a Symmetric Disk Butterfly Valve in a Compressible Fluid
,”
ASME J. Pressure Vessel Technol.
,
130
(
2
), p.
021302
.
32.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2011
, “
A Chaotic Blue Sky Catastrophe of Butterfly Valves Driven by Solenoid Actuators
,”
ASME
Paper No. IMECE2011/62608.
33.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
34.
Cerny
,
V.
,
1985
, “
Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm
,”
J. Optim. Theory Appl.
,
45
(
1
), January,
45
(
1
), pp.
41
55
.
35.
Holland
,
H. J.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
You do not currently have access to this content.