Dealing with unforeseeable changing situations, often seen in exploratory and hazardous task domains, requires systems that can adapt to changing tasks and varying environments. The challenge for engineering design researchers and practitioners is how to design such adaptive systems. Taking advantage of the flexibility of multi-agent systems, a self-organizing systems approach has been proposed, in which mechanical cells or agents organize themselves as the environment and tasks change based on a set of predefined rules. To enable self-organizing systems to perform more realistic tasks, a two-field framework is introduced to capture task complexity and agent behaviors, and a rule-based social structuring mechanism is proposed to facilitate self-organizing for better performance. Computer simulation-based case studies were carried out to investigate how social structuring among agents, together with the size of agent population, can influence self-organizing system performance in the face of increasing task complexity. The simulation results provide design insights into task-driven social structures and their effect on the behavior and performance of self-organizing systems.

References

References
1.
Zouein
,
G.
,
Chen
,
C.
, and
Jin
,
Y.
,
2010
, “
Create Adaptive Systems Through ‘DNA’ Guided Cellular Formation
,”
1st International Conference on Design Creativity
, pp.
149
156
.
2.
Chiang
,
W.
, and
Jin
,
Y.
,
2011
, “
Toward a Meta-Model of Behavioral Interaction for Designing Complex Adaptive Systems
,”
ASME
Paper No. DETC2011-48821.
3.
Jin
,
Y.
, and
Chen
,
C.
,
2014
, “
Field Based Behavior Regulation for Self-Organization in Cellular Systems
,”
Design Computing and Cognition '12
,
Springer
,
Dordrecht, The Netherlands
.
4.
Chen
,
C.
, and
Jin
,
Y.
,
2011
, “
A Behavior Based Approach to Cellular Self-Organizing Systems Design
,”
ASME
Paper No. DETC2011-48833.
5.
Humann
,
J.
, and
Jin
,
Y.
,
2013
, “
Evolutionary Design of Cellular Self-Organizing Systems
,”
ASME
Paper No. DETC2013-12485.
6.
Jin
,
Y.
, and
Chen
,
C.
,
2014
, “
Cellular Self-Organizing Systems: A Field-Based Behavior Regulation Approach
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
28
(
2
), pp.
115
128
.
7.
Simon
,
H. A.
,
1962
, “
The Architecture of Complexity
,”
Proc. Am. Philos. Soc.
,
106
(
6
), pp.
467
482
.
8.
Williams
,
E. L.
,
1981
,
Thermodynamics and the Development of Order
,
Creation Research Society Books
,
Norcross, GA
.
9.
Ferguson
,
S.
, and
Lewis
,
K.
,
2006
, “
Effective Development of Reconfigurable Systems Using Linear State-Feedback Control
,”
AIAA J.
,
44
(
4
), pp.
868
878
.
10.
Martin
,
M. V.
, and
Ishii
,
K.
,
1997
, “
Design for Variety: Development of Complexity Indices and Design Charts
,”
ASME
Paper No. DETC97/DFM-4359.
11.
Rus
,
D.
, and
Vona
,
M.
,
1999
, “
Self-Reconfiguration Planning With Compressible Unit Modules
,”
IEEE
International Conference on Robotics and Automation
, Detroit, MI, Vol.
4
, pp.
2513
2520
.
12.
Rus
,
D.
, and
Vona
,
M.
,
2000
, “
A Physical Implementation of the Self-Reconfiguring Crystalline Robot
,”
IEEE International Conference on Robotics and Automation
, ICRA’00, Vol.
2
, pp.
1726
1733
.
13.
Rus
,
D.
, and
Vona
,
M.
,
2001
, “
Crystalline Robots: Self-Reconfiguration With Compressible Unit Modules
,”
Auton. Rob.
,
10
(
1
), pp.
107
124
.
14.
Fukuda
,
T.
, and
Nakagawa
,
S.
,
1987
, “
A Dynamically Reconfigurable Robotic System (Concept of a System and Optimal Configurations)
,”
Robotics and IECON’87 Conferences
, pp.
588
595
.
15.
Unsal
,
C.
,
Kiliccote
,
H.
, and
Khosla
,
P. K.
,
1999
, “
I (CES)-Cubes: A Modular Self-Reconfigurable Bipartite Robotic System
,”
Proc. SPIE
,
3839
, pp.
258
269
.
16.
Prevas
,
K. C.
,
Unsal
,
C.
,
Efe
,
M. O.
, and
Khosla
,
P. K.
,
2002
, “
A Hierarchical Motion Planning Strategy for a Uniform Self-Reconfigurable Modular Robotic System
,”
IEEE International Conference on Robotics and Automation
,
ICRA’02
, Vol.
1
, pp.
787
792
.
17.
Yim
,
M.
,
1993
, “
A Reconfigurable Modular Robot With Many Modes of Locomotion
,”
International Conference on Advanced Mechatronics
, pp.
283
288
.
18.
Yim
,
M.
,
Zhang
,
Y.
, and
Duff
,
D.
,
2002
, “
Modular Robots
,”
IEEE Spectrum
,
39
(
2
), pp.
30
34
.
19.
Shen
,
W. M.
,
Krivokon
,
M.
,
Chiu
,
H.
,
Everist
,
J.
,
Rubenstein
,
M.
, and
Venkatesh
,
J.
,
2006
, “
Multimode Locomotion Via SuperBot Reconfigurable Robots
,”
Auton. Rob.
,
20
(
2
), pp.
165
177
.
20.
Arkin
,
R. C.
, and
Balch
,
T.
,
1998
, “
Cooperative Multiagent Robotic Systems
,”
Artificial Intelligence and Mobile Robots
,
MIT/AAAI Press
,
Cambridge, MA
.
21.
Brooks
,
R.
,
1986
, “
A Robust Layered Control System for a Mobile Robot
,”
IEEE J. Rob. Autom.
,
2
(
1
), pp.
14
23
.
22.
Mataric
,
M. J.
,
1997
, “
Behaviour-Based Control: Examples From Navigation, Learning, and Group Behaviour
,”
J. Exp. Theor. Artif. Intell.
,
9
(
2–3
), pp.
323
336
.
23.
Parker
,
L. E.
,
1998
, “
ALLIANCE: An Architecture for Fault Tolerant Multirobot Cooperation
,”
IEEE Trans. Rob. Autom.
,
14
(
2
), pp.
220
240
.
24.
Horling
,
B.
, and
Lesser
,
V.
,
2004
, “
A Survey of Multi-Agent Organizational Paradigms
,”
Knowl. Eng. Rev.
,
19
(
4
), pp.
281
316
.
25.
Thompson
,
J. D.
,
1967
,
Organizations in Action: Social Science Bases of Administrative Theory
,
Transaction Publishers
, New Brunswick, NJ.
26.
Galbraith
,
J. R.
,
1977
,
Organization Design
,
Addison-Wesley
,
Reading, MA
.
27.
Scott
,
W.
,
1992
,
Richard: Organizations-Rational, Natural, and Open Systems
,
Prentice Hall
, New York.
28.
Durfee
,
E. H.
,
Lesser
,
V. R.
, and
Corkill
,
D. D.
,
1987
, “
Coherent Cooperation Among Communicating Problem Solvers
,”
IEEE Trans. Comput.
,
100
(
11
), pp.
1275
1291
.
29.
Horling
,
B.
,
Mailler
,
R.
, and
Lesser
,
V.
,
2004
, “
A Case Study of Organizational Effects in a Distributed Sensor Network
,”
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
,
IAT 2004
, Sept. 20–24, pp.
51
57
.
30.
Matson
,
E.
, and
DeLoach
,
S.
,
2003
, “
Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots
,” International Conference on Artificial Intelligence (IC-AI '03), Vol. 2, pp. 744–749.
31.
Barber
,
K. S.
,
Goel
,
A.
, and
Martin
,
C. E.
,
2000
, “
Dynamic Adaptive Autonomy in Multi-Agent Systems
,”
J. Exp. Theor. Artif. Intell.
,
12
(
2
), pp.
129
147
.
32.
So
,
Y.
, and
Durfee
,
E. H.
,
1998
,
Designing Organizations for Computational Agents, Simulating Organizations: Computational Models of Institutions and Groups
,
MIT Press
,
Cambridge, MA
.
33.
Brooks
,
C. H.
, and
Durfee
,
E. H.
,
2003
, “
Congregation Formation in Multiagent Systems
,”
Auton. Agents Multi-Agent Syst.
,
7
(
1
), pp.
145
170
.
34.
Lesser
,
V. R.
,
1998
, “
Reflections on the Nature of Multi-Agent Coordination and Its Implications for an Agent Architecture
,”
Auton. Agents Multi-Agent Syst.
,
1
(
1
), pp.
89
111
.
35.
Durfee
,
E. H.
,
2001
, “
Scaling up Agent Coordination Strategies
,”
Computer
,
34
(
7
), pp.
39
46
.
36.
Humann
,
J.
, and
Madni
,
A. M.
,
2014
, “
Integrated Agent-Based Modeling and Optimization in Complex Systems Analysis
,”
Procedia Comput. Sci.
,
28
, pp.
818
827
.
37.
Humann
,
J.
,
Khani
,
N.
, and
Jin
,
Y.
,
2014
, “
Evolutionary Computational Synthesis of Self-Organizing Systems
,”
Art. Intell. Eng. Design, Anal. Manuf.
,
28
(
3
), pp.
259
275
.
38.
Ashby
,
W. R.
,
1956
,
An Introduction to Cybernetics
,
Chapman & Hail
,
London
.
39.
Huberman
,
B. A.
, and
Hogg
,
T.
,
1986
, “
Complexity and Adaptation
,”
Phys. Nonlinear Phenom.
,
22
(
1
), pp.
376
384
.
40.
Wood
,
R. E.
,
1986
, “
Task Complexity: Definition of the Construct
,”
Organ. Behav. Hum. Decis. Processes
,
37
(
1
), pp.
60
82
.
41.
Campbell
,
D. J.
,
1988
, “
Task Complexity: A Review and Analysis
,”
Acad. Manage. Rev.
,
13
(
1
), pp.
40
52
.
42.
Gell-Mann
,
M.
,
2002
, “
What is Complexity?
,”
Complexity and Industrial Clusters
,
Physica-Verlag
,
Heidelberg
, pp.
13
24
.
43.
Bonchev
,
D. D.
, and
Rouvray
,
D. H.
,
1991
,
Chemical Graph Theory: Introduction and Fundamentals
, Vol.
1
,
Abacus Press
,
New York
.
44.
Randi
,
M.
, and
Plav
,
D.
,
2002
, “
On the Concept of Molecular Complexity
,”
Croat. Chem. Acta
,
75
(1), pp.
107
116
.
45.
Bonchev
,
D.
,
1983
,
Information Theoretic Indices for Characterization of Chemical Structures
, Vol.
5
,
Research Studies Press
,
Chichester, UK
.
46.
Bonchev
,
D.
,
2003
, “
Shannon's Information and Complexity
,”
Complexity in Chemistry Introduction and Fundamental
,
D.
Bonchev
, and
D. H.
Rouvray
, eds.,
Taylor & Francis
,
London
, pp.
157
187
.
47.
Bonchev
,
D.
,
2003
, “
On the Complexity of Directed Biological Networks
,”
SAR QSAR Environ. Res.
,
14
(
3
), pp.
199
214
.
48.
Bonchev
,
D. D.
, and
Rouvray
,
D.
,
2007
,
Complexity in Chemistry, Biology, and Ecology
,
Springer
,
New York
.
49.
Zhang
,
C.
,
Abdallah
,
S.
, and
Lesser
,
V.
,
2008
, “
Efficient Multi-Agent Reinforcement Learning Through Automated Supervision
,”
7th International Joint Conference on Autonomous Agents and Multiagent Systems
(
AAMAS '08
), Vol.
3
, pp.
1365
1370
.
50.
Gershenson
,
C.
,
2005
, “
A General Methodology for Designing Self-Organizing Systems
,”
Preprint arXiv
:Nlin0505009.
51.
Jin
,
Y.
, and
Levitt
,
R. E.
,
1996
, “
The Virtual Design Team: A Computational Model of Project Organizations
,”
Comput. Math. Organ. Theory
,
2
(
3
), pp.
171
195
.
52.
Wilensky
,
U.
,
2001
, “
Modeling Nature's Emergent Patterns With Multi-Agent Languages
,”
EuroLogo
, pp.
43
52
.
You do not currently have access to this content.