Wrench-closure is an important property of cable-driven parallel manipulators (CDPMs), representing the ability to generate wrench in any direction by positive cable forces. For single link CDPMs, it is well known that m ≥ n + 1 cables are necessary for an n degrees-of-freedom CDPM to achieve wrench-closure. However, for multilink cable-driven manipulators (MCDMs), this condition is too relaxed and the cable routing should also be considered. In this paper, necessary conditions to achieve wrench-closure for MCDMs are mathematically derived based on the cable routing arrangements. Since the approach is independent on the exact attachment locations, the proposed necessary conditions can be efficiently validated during the design and synthesis of MCDMs. Analysis is performed on a range of different MCDM structures to identify cable arrangements that do not satisfy wrench-closure for an MCDM.

References

References
1.
Wittmeier
,
S.
,
Alessandro
,
C.
,
Bascarevic
,
N.
,
Dalamagkidis
,
K.
,
Devereux
,
D.
,
Diamond
,
A.
,
Jäntsch
,
M.
,
Jovanovic
,
K.
,
Knight
,
R.
,
Marques
,
H. G.
,
Milosavljevic
,
P.
,
Mitra
,
B.
,
Svetozarevic
,
B.
,
Potkonjak
,
V.
,
Pfeifer
,
R.
,
Knoll
,
A.
, and
Holland
,
O.
,
2013
, “
Toward Anthropomimetic Robotics: Development, Simulation, and Control of a Musculoskeletal Torso
,”
J. Artif. Life
,
19
(
1
), pp.
171
193
.
2.
Kozuki
,
T.
,
Mizoguchi
,
H.
,
Asano
,
Y.
,
Osada
,
M.
,
Shirai
,
T.
,
Urata
,
J.
,
Nakanishi
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2012
, “
Design Methodology for Thorax and Shoulder of Human Mimetic Musculoskeletal Humanoid Kenshiro—A Thorax With Rib Like Surface
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)
, Vilamoura, Portugal, Oct. 7–12, pp.
3687
3692
.
3.
Yang
,
G.
,
Mustafa
,
S. K.
,
Yeo
,
S. H.
,
Lin
,
W.
, and
Lim
,
W. B.
,
2011
, “
Kinematic Design of an Anthropomimetic 7-DOF Cable-Driven Robotic Arm
,”
Front. Mech. Eng.
,
6
(
1
), pp.
45
60
.
4.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2013
, “
Generalized Modeling of Multilink Cable-Driven Manipulators With Arbitrary Routing Using the Cable-Routing Matrix
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1102
1113
.
5.
Rezazadeh
,
S.
, and
Behzadipour
,
S.
,
2011
, “
Workspace Analysis of Multibody Cable-Driven Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021005
.
6.
Mustafa
,
S. K.
, and
Agrawal
,
S. K.
,
2012
, “
On the Force-Closure Analysis of n-DOF Cable-Driven Open Chains Based on Reciprocal Screw Theory
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
22
31
.
7.
Fang
,
S.
,
Franitza
,
D.
,
Torlo
,
M.
,
Bekes
,
F.
, and
Hiller
,
M.
,
2004
, “
Motion Control of a Tendon-Based Parallel Manipulator Using Optimal Tension Distribution
,”
IEEE Trans. Mechatronics
,
9
(
3
), pp.
561
568
.
8.
Oh
,
S.-R.
, and
Agrawal
,
S. K.
,
2005
, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
457
465
.
9.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2015
, “
Inverse Dynamics of Multilink Cable-Driven Manipulators With the Consideration of Joint Interaction Forces and Moments
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
479
488
.
10.
Lau
,
D.
,
Bhalerao
,
K.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2012
, “
On the Task Specific Evaluation and Optimisation of Cable-Driven Manipulators
,”
Advances in Reconfigurable Mechanisms and Robots I
,
J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.
Springer
,
London, UK
, pp.
707
716
.
11.
Gouttefarde
,
M.
,
Collard
,
J. F.
,
Riehl
,
N.
, and
Baradat
,
C.
,
2015
, “
Geometry Selection of a Redundantly Actuated Cable-Suspended Parallel Robot
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
501
510
.
12.
Perreault
,
S.
,
Cardou
,
P.
,
Gosselin
,
C. M.
, and
M. J.-D.
Otis
,
2010
, “
Geometric Determination of the Interference-Free Constant-Orientation Workspace of Parallel Cable-Driven Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031016
.
13.
Lau
,
D.
,
Eden
,
J.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2015
, “
Musculoskeletal Static Workspace of the Human Shoulder as a Cable-Driven Robot
,”
IEEE Trans. Mechatronics
,
20
(
2
), pp.
978
984
.
14.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.
15.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2011
, “
Wrench-Closure Workspace Generation for Cable Driven Parallel Manipulators Using a Hybrid Analytical-Numerical Approach
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071004
.
16.
Lim
,
W. B.
,
Yang
,
G.
,
Yeo
,
S. H.
, and
Mustafa
,
S. K.
,
2011
, “
A Generic Force-Closure Analysis Algorithm for Cable-Driven Parallel Manipulators
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1265
1275
.
17.
Hassan
,
M.
, and
Khajepour
,
A.
,
2011
, “
Analysis of Bounded Cable Tensions in Cable-Actuated Parallel Manipulators
,”
IEEE Trans. Rob.
,
27
(
5
), pp.
891
900
.
18.
Lau
,
D.
,
Eden
,
J.
,
Halgamuge
,
S.
, and
Oetomo
,
D.
,
2014
, “
Cable Function Analysis for the Musculoskeletal Static Workspace of a Human Shoulder
,”
Cable-Driven Parallel Robots
, Vol.
32
(Mechanisms and Machine Science),
A.
Pott
and
T.
Bruckmann
, eds.
Springer International Publishing
,
Berlin
, pp.
263
274
.
19.
Ming
,
A.
, and
Higuchi
,
T.
,
1994
, “
Study on Multiple Degrees-of-Freedom Positioning Mechanism Using Wires (Part 1)—Concept, Design and Control
,”
Int. J. Jpn. Soc. Eng.
,
28
(
2
), pp.
131
138
.
20.
Voglewede
,
P. A.
, and
Ebert-Uphoff
,
I.
,
2005
, “
Application of the Antipodal Grasp Theorem to Cable-Driven Robots
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
713
718
.
21.
Mustafa
,
S. K.
, and
Agrawal
,
S. K.
,
2011
, “
Reciprocal Screw-Based Force-Closure of an n-DOF Open Chain: Minimum Number of Cables Required to Fully Constrain It
,”
IEEE International Conference on Robotics and Automation
(ICRA)
, Shanghai, May 9–13, pp.
3029
3034
.
22.
Rezazadeh
,
S.
, and
Behzadipour
,
S.
,
2007
, “
Tensionability Conditions of a Multi-Body System Driven by Cables
,”
ASME
Paper No. IMECE2007-42433.
You do not currently have access to this content.