Resource allocation in the presence of constraints is an important activity in many systems engineering problems such as surveillance, infrastructure planning, environmental monitoring, and cooperative task performance. The resources in many important problems are agents such as a person, machine, unmanned aerial vehicles (UAVs), infrastructures, and software. Effective execution of a given task is highly correlated with effective allocation of resources to execute the task. An important class of resource allocation problem in the presence of limited resources is static coverage problem. In static coverage problems, it is necessary to allocate resources (stationary configuration of agents) to cover an area of interest so that an event or spatial property of the area can be detected or monitored with high probability. In this paper, we outline a novel sampling algorithm for the static coverage problem in presence of probabilistic resource intensity allocation maps (RIAMs). The key intuition behind our sampling approach is to use the finite number of samples to generate an accurate representation of RIAM. The outlined sampling technique is based on an optimization framework that approximates the RIAM with piecewise linear surfaces on the Delaunay triangles and optimizes the sample placement locations to decrease the difference between the probability distribution and Delaunay triangle surface. Numerical results demonstrate that the algorithm is robust to the initial sample point locations and has superior performance in a wide range of theoretical problems and real-life applications. In a real-life application setting, we demonstrate the efficacy of the proposed algorithm to predict the position of wind stations for monitoring wind speeds across the U.S. The algorithm is also used to give recommendations on the placement of police cars in San Francisco and weather buoys in Pacific Ocean.

References

References
1.
Sterbenz
,
J. P.
,
Cetinkaya
,
E. K.
,
Hameed
,
M. A.
,
Jabbar
,
A.
,
Qian
,
S.
, and
Rohrer
,
J. P.
,
2013
, “
Evaluation of Network Resilience, Survivability, and Disruption Tolerance: Analysis, Topology Generation, Simulation, and Experimentation
,”
Telecommun. Syst.
,
52
(
2
), pp.
705
736
.
2.
Konak
,
A.
, and
Bartolacci
,
M. R.
,
2007
, “
Designing Survivable Resilient Networks: A Stochastic Hybrid Genetic Algorithm Approach
,”
Omega
,
35
(
6
), pp.
645
658
.
3.
Kwak
,
N.
, and
Lee
,
C.
,
1998
, “
A Multicriteria Decision-Making Approach to University Resource Allocations and Information Infrastructure Planning
,”
Eur. J. Oper. Res.
,
110
(
2
), pp.
234
242
.
4.
Gutiérrez
,
J.
,
Monzon
,
A.
, and
Piñero
,
J.
,
1998
, “
Accessibility, Network Efficiency, and Transport Infrastructure Planning
,”
Environ. Plann. A
,
30
(
8
), pp.
1337
1350
.
5.
Mainwaring
,
A.
,
Culler
,
D.
,
Polastre
,
J.
,
Szewczyk
,
R.
, and
Anderson
,
J.
,
2002
, “
Wireless Sensor Networks for Habitat Monitoring
,” 1st
ACM
International Workshop on Wireless Sensor Networks and Applications
, Atlanta, GA, Sept. 28, pp.
88
97
.
6.
Cerpa
,
A.
,
Elson
,
J.
,
Estrin
,
D.
,
Girod
,
L.
,
Hamilton
,
M.
, and
Zhao
,
J.
,
2001
, “
Habitat Monitoring: Application Driver for Wireless Communications Technology
,”
ACM SIGCOMM Comput. Commun. Rev.
,
31
(
Suppl. 2
), pp.
20
41
.
7.
Anussornnitisarn
,
P.
,
Nof
,
S. Y.
, and
Etzion
,
O.
,
2005
, “
Decentralized Control of Cooperative and Autonomous Agents for Solving the Distributed Resource Allocation Problem
,”
Int. J. Prod. Econ.
,
98
(
2
), pp.
114
128
.
8.
Macdonald
,
F.
,
2015
, “
The World's Most Spectacular New Airports
,” http://www.bbc.com/culture/story/20150119-the-most-spectacular-new-airports
9.
Mathew
,
G.
, and
Surana
,
A.
,
2012
, “
A Static Coverage Algorithm for Locational Optimization
,”
51st Annual Conference on Decision and Control
(
CDC
), Maui, HI, Dec. 10–13, pp.
806
811
.
10.
Berry
,
J.
,
Hart
,
W. E.
,
Phillips
,
C. A.
,
Uber
,
J. G.
, and
Watson
,
J.-P.
,
2006
, “
Sensor Placement in Municipal Water Networks With Temporal Integer Programming Models
,”
J. Water Resour. Plann. Manage.
,
132
(
4
), pp.
218
224
.
11.
Mirchandani
,
P. B.
, and
Francis
,
R. L.
,
1990
,
Discrete Location Theory
,
Wiley
,
New York
.
12.
Krause
,
A.
,
Singh
,
A.
, and
Guestrin
,
C.
,
2008
, “
Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies
,”
J. Mach. Learn. Res.
,
9
, pp.
235
284
.
13.
Okabe
,
A.
, and
Suzuki
,
A.
,
1997
, “
Locational Optimization Problems Solved Through Voronoi Diagrams
,”
Eur. J. Oper. Res.
,
98
(
3
), pp.
445
456
.
14.
Guruprasad
,
K.
, and
Ghose
,
D.
,
2009
, “
Coverage Optimization Using Generalized Voronoi Partition
,”
e-print arXiv
:0908.3565.
15.
Cortes
,
J.
,
Martinez
,
S.
,
Karatas
,
T.
, and
Bullo
,
F.
,
2004
, “
Coverage Control for Mobile Sensing Networks
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
243
255
.
16.
Lloyd
,
S.
,
1982
, “
Least Squares Quantization in PCM
,”
IEEE Trans. Inf. Theory
,
28
(
2
), pp.
129
137
.
17.
Oliveto
,
P. S.
,
He
,
J.
, and
Yao
,
X.
,
2007
, “
Time Complexity of Evolutionary Algorithms for Combinatorial Optimization: A Decade of Results
,”
Int. J. Autom. Comput.
,
4
(
3
), pp.
281
293
.
18.
Sudholt
,
D.
,
2008
, “
Computational Complexity of Evolutionary Algorithms, Hybridizations, and Swarm Intelligence
,”
Ph.D. thesis
, Dortmund University of Technology, Dortmund, Germany.
19.
MacKay
,
D. J.
,
2003
,
Information Theory, Inference, and Learning Algorithms
, Vol.
7
,
Cambridge University Press
,
Cambridge, UK
.
20.
Hartigan
,
J. A.
, and
Wong
,
M. A.
,
1979
, “
Algorithm as 136: A K-Means Clustering Algorithm
,”
J. R. Stat. Soc. Ser. C
,
28
(
1
), pp.
100
108
.
21.
Kanungo
,
T.
,
Mount
,
D. M.
,
Netanyahu
,
N. S.
,
Piatko
,
C. D.
,
Silverman
,
R.
, and
Wu
,
A. Y.
,
2002
, “
An Efficient K-Means Clustering Algorithm: Analysis and Implementation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
7
), pp.
881
892
.
22.
Hierarchical Clustering Algorithms
,
2013
, “
A Tutorial on Clustering Algorithms
,” http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
23.
Aurenhammer
,
F.
,
1991
, “
Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure
,”
ACM Comput. Surv.
,
23
(
3
), pp.
345
405
.
24.
Cheng
,
S.-W.
,
Dey
,
T. K.
, and
Shewchuk
,
J.
,
2012
,
Delaunay Mesh Generation
,
CRC Press
,
Boca Raton, FL
.
25.
Cheng
,
S.-W.
,
Dey
,
T. K.
,
Ramos
,
E. A.
, and
Ray
,
T.
,
2007
, “
Sampling and Meshing a Surface With Guaranteed Topology and Geometry
,”
SIAM J. Comput.
,
37
(
4
), pp.
1199
1227
.
26.
Stein
,
M. L.
,
1999
,
Interpolation of Spatial Data: Some Theory for Kriging
,
Springer
,
New York
.
27.
Oliver
,
M. A.
, and
Webster
,
R.
,
1990
, “
Kriging: A Method of Interpolation for Geographical Information Systems
,”
Int. J. Geogr. Inf. Syst.
,
4
(
3
), pp.
313
332
.
28.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
, “
DACE—A matlab Kriging Toolbox, Version 2.0
,” Technical University of Denmark, Lyngby, Denmark, Technical Report No. IMM-TR-2002-12.
29.
Catina
,
E.
,
2005
, “
The Inexact, Inexact Perturbed, and Quasi-Newton Methods are Equivalent Models
,”
Math. Comput.
,
74
(
249
), pp.
291
301
.
30.
ESRL
,
2015
, “
NCEP/NCAR Reanalysis 1: Pressure
,” http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.pressure.html
31.
SF OpenData
,
2015
, “Crime Incidents—From 1 Jan. 2014,” https://data.sfgov.org/Public-Safety/new/w286-c3wd
32.
San Francisco Police
,
2015
, “
San Francisco Police Department District Stations and Map
,” http://sanfranciscopolice.org/index.aspx?page=796
33.
Kriegel
,
H.-P.
,
Kröger
,
P.
,
Sander
,
J.
, and
Zimek
,
A.
,
2011
, “
Density-Based Clustering
,”
Wiley Interdiscip. Rev.
,
1
(
3
), pp.
231
240
.
34.
Xu
,
R.
, and
Wunsch
,
D.
,
2005
, “
Survey of Clustering Algorithms
,”
IEEE Trans. Neural Networks
,
16
(
3
), pp.
645
678
.
You do not currently have access to this content.