The success of model-based multifunctional material design efforts relies on the proper development of multiphysical models and advanced optimization algorithms. This paper addresses both in the context of a structure that includes a liquid metal (LM) circuit for integrated cooling. We demonstrate for the first time on a complex engineering problem the use of a parameterized approach to design optimization that solves a family of optimization problems as a function of parameters exogenous to the subsystem of interest. This results in general knowledge about the capabilities of the subsystem rather than a restrictive point solution. We solve this specialized problem using the predictive parameterized Pareto genetic algorithm (P3GA) and show that it efficiently produces results that are accurate and useful for design exploration and reasoning. A “population seeding” approach allows an efficient multifidelity approach that combines a computationally efficient reduced-fidelity algebraic model with a computationally intensive finite-element model. Using data output from P3GA, we explore different design scenarios for the LM thermal management concept and demonstrate how engineers can make a final design selection once the exogenous parameters are resolved.

References

1.
Dickey
,
M. D.
,
Chiechi
,
R. C.
,
Larsen
,
R. J.
,
Weiss
,
E. A.
,
Weitz
,
D. A.
, and
Whitesides
,
G. M.
,
2008
, “
Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature
,”
Adv. Funct. Mater.
,
18
(
7
), pp.
1097
1104
.
2.
Cumby
,
B. L.
,
Hayes
,
G. J.
,
Dickey
,
M. D.
,
Justice
,
R. S.
,
Tabor
,
C. E.
, and
Heikenfeld
,
J. C.
,
2012
, “
Reconfigurable Liquid Metal Circuits by Laplace Pressure Shaping
,”
Appl. Phys. Lett.
,
101
(
17
), p.
174102
.
3.
Kelley
,
M.
,
Koo
,
C.
,
Mcquilken
,
H.
,
Lawrence
,
B.
,
Li
,
S.
,
Han
,
A.
, and
Huff
,
G.
,
2013
, “
Frequency Reconfigurable Patch Antenna Using Liquid Metal as Switching Mechanism
,”
Electron. Lett.
49
(
22
), pp.
1370
1371
.
4.
Sen
,
P.
, and
Kim
,
C.-J.
,
2009
, “
Microscale Liquid-Metal Switches—A Review
,”
IEEE Trans. Ind. Electron.
,
56
(
4
), pp.
1314
1330
.
5.
Tabatabai
,
A.
,
Fassler
,
A.
,
Usiak
,
C.
, and
Majidi
,
C.
,
2013
, “
Liquid-Phase Gallium–Indium Alloy Electronics With Microcontact Printing
,”
Langmuir
,
29
(
20
), pp.
6194
6200
.
6.
Kirillov
,
I. R.
,
Reed
,
C. B.
,
Barleon
,
L.
, and
Miyazaki
,
K.
,
1995
, “
Present Understanding of MHD and Heat Transfer Phenomena for Liquid Metal Blankets
,”
Fusion Eng. Des.
,
27
, pp.
553
569
.
7.
Ghoshal
,
U.
,
Grimm
,
D.
,
Ibrani
,
S.
,
Johnston
,
C.
, and
Miner
,
A.
,
2005
, “
High-Performance Liquid Metal Cooling Loops
,” 2005 IEEE Twenty-First Annual
IEEE
Semiconductor Thermal Measurement and Management Symposium
, Mar. 15–17, San Jose, CA, pp.
16
19
.
8.
Wilcoxon
,
R.
,
Lower
,
N.
, and
Dlouhy
,
D.
,
2010
, “
A Compliant Thermal Spreader With Internal Liquid Metal Cooling Channels
,”
26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, 2010,
SEMI-THERM 2010
, Santa Clara, CA, Feb. 21–25, pp.
210
216
.
9.
Hodes
,
M.
,
Zhang
,
R.
,
Wilcoxon
,
R.
, and
Lower
,
N.
,
2012
, “
Cooling Potential of Galinstan-Based Minichannel Heat Sinks
,” 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 30–June 1, pp.
297
302
.
10.
Esser-Kahn
,
A. P.
,
Thakre
,
P. R.
,
Dong
,
H.
,
Patrick
,
J. F.
,
Vlasko-Vlasov
,
V. K.
,
Sottos
,
N. R.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2011
, “
Three-Dimensional Microvascular Fiber-Reinforced Composites
,”
Adv. Mater.
,
23
(
32
), pp.
3654
3658
.
11.
Brown
,
R. L.
,
Das
,
K.
,
Cizmas
,
P. G.
, and
Whitcomb
,
J. D.
,
2014
, “
Numerical Investigation of Actively Cooled Structures in Hypersonic Flow
,”
J. Aircr.
,
51
(
5
), pp.
1522
1531
.
12.
Lubarsky
,
B.
, and
Kaufman
,
S. J.
,
1956
, “
Review of Experimental Investigations of Liquid-Metal Heat Transfer
,”
National Advisory Committee for Aeronautics
,
Report No. 1270
.
13.
Liu
,
T.
,
Sen
,
P.
, and
Kim
,
C.-J.
,
2012
, “
Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices
,”
J. Microelectromech. Syst.
,
21
(
2
), pp.
443
450
.
14.
Kadid
,
F.
,
Abdessemed
,
R.
, and
Drid
,
S.
,
2004
, “
Study of the Fluid Flow in a MHD Pump Coupling Finite Element-Finite Volume Computations
,”
J. Electr. Eng.
,
55
(
11–12
), pp.
301
305
.
15.
Kang
,
H.-J.
, and
Choi
,
B.
,
2011
. “
Development of the MHD Micropump With Mixing Function
,”
Sens. Actuators A
,
165
(
2
), pp.
439
445
.
16.
Hartl
,
D.
,
Frank
,
G.
, and
Baur
,
J.
, “
Magnetohydrodynamic Liquid Metal Thermal Transport: Validated Analysis and Multi-Fidelity Design Optimization
,”.
Finite Elem. Anal. Des.
, (submitted).
17.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
(
1
), pp.
1
23
.
18.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.
19.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
,
2003
, “
Convergence Properties of Analytical Target Cascading
,”.
AIAA J.
,
41
(
5
), pp.
897
905
.
20.
Kim
,
H. M.
,
Kumar
,
D. K.
,
Chen
,
W.
, and
Papalambros
,
P. Y.
,
2006
, “
Target Exploration for Disconnected Feasible Regions in Enterprise-Driven Multilevel Product Design
,”
AIAA J.
,
44
(
1
), pp.
67
77
.
21.
Kumar
,
D. K.
,
Chen
,
W.
, and
Kim
,
H. M.
,
2006
, “
Multilevel Optimization for Enterprise-Driven Decision-Based Product Design
,”
AIAA
Paper No. 2006-6923.
22.
Kroo
,
I.
, and
Manning
,
V.
,
2000
, “
Collaborative Optimization: Status and Directions
,”
AIAA
Paper No. 2000-4721.
23.
Gu
,
X.
,
Renaud
,
J. E.
,
Ashe
,
L. M.
,
Batill
,
S. M.
,
Budhiraja
,
A. S.
, and
Krajewski
,
L. J.
,
2002
, “
Decision-Based Collaborative Optimization
,”
ASME J. Mech. Des.
,
124
(
1
), pp.
1
13
.
24.
Cramer
,
E. J.
,
Dennis
, Jr.,
J.
,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
.
25.
Milgrom
,
P.
, and
Segal
,
I.
,
2002
, “
Envelope Theorems for Arbitrary Choice Sets
,”
Econometrica
,
70
(
2
), pp.
583
601
.
26.
Carlsson
,
C.
, and
Korhonen
,
P.
,
1986
, “
A Parametric Approach to Fuzzy Linear Programming
,”
Fuzzy Sets Syst.
,
20
(
1
), pp.
17
30
.
27.
Pistikopoulos
,
E. N.
,
Georgiadis
,
M. C.
, and
Dua
,
V.
, eds.,
2007
,
Multi-Parametric Model-Based Control: Theory and Applications
, Vol.
2
,
Wiley
,
New York
.
28.
Milgrom
,
P.
, and
Shannon
,
C.
,
1994
, “
Monotone Comparative Statics
,”
Econometrica: J. Econometric Soc.
,
62
(
1
), pp.
157
180
.
29.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.
30.
Malak
,
R. J.
, and
Paredis
,
C. J.
,
2010
, “
Using Parameterized Pareto Sets to Model Design Concepts
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041007
.
31.
Galvan
,
E.
, and
Malak
,
R. J.
,
2015
, “
P3GA: An Algorithm for Technology Characterization
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011401
.
32.
Jones
,
D. F.
,
Mirrazavi
,
S. K.
, and
Tamiz
,
M.
,
2002
, “
Multi-Objective Meta-Heuristics: An Overview of the Current State-of-the-Art
,”
Eur. J. Oper. Res.
,
137
(
1
), pp.
1
9
.
33.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
34.
Tax
,
D. M.
, and
Duin
,
R. P.
,
1999
, “
Support Vector Domain Description
,”
Pattern Recognit. Lett.
,
20
(
11
), pp.
1191
1199
.
35.
Ferguson
,
S.
,
Gurnani
,
A.
,
Donndelinger
,
J.
, and
Lewis
,
K.
,
2005
, “
A Study of Convergence and Mapping in Preliminary Vehicle Design
,”
Int. J. Veh. Syst. Modell. Testing
,
1
(
1
), pp.
192
215
.
36.
Mattson
,
C. A.
, and
Messac
,
A.
,
2003
, “
Concept Selection Using S-Pareto Frontiers
,”
AIAA J.
,
41
(
6
), pp.
1190
1198
.
37.
Parker
,
R. R.
,
Galvan
,
E.
, and
Malak
,
R. J.
,
2014
, “
Technology Characterization Models and Their Use in Systems Design
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071003
.
38.
Beers
,
W. C. M. v.
, and
Kleijnen
,
J. P. C.
,
2004
, “
Kriging Interpolation in Simulation: A Survey
,”
36th Conference on Winter Simulation
, Dec. 5–8.
39.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
, “
Dace-a MATLAB Kriging Toolbox, Version 2.0
,”
Technical Report No. IMM-TR-2002-12
.
40.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
14th International Joint Conference on Artificial Intelligence
,
Montreal, Quebec
,
Canada
, Vol. 2.
41.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2009
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
, Vol.
705
,
Wiley
,
New York
.
42.
Scharf
,
L. L.
,
1991
,
Statistical Signal Processing
, Vol.
98
,
Addison-Wesley
,
Reading, MA
.
43.
Borghi
,
C.
,
Cristofolini
,
A.
, and
Fabbri
,
M.
,
1998
, “
Study of the Design Model of a Liquid Metal Induction Pump
,”
IEEE Trans. Magn.
,
34
(
5
), pp.
2956
2959
.
44.
Homsy
,
A.
,
Koster
,
S.
,
Eijkel
,
J. C.
,
van den Berg
,
A.
,
Lucklum
,
F.
,
Verpoorte
,
E.
, and
de Rooij
,
N. F.
,
2005
, “
A High Current Density DC Magnetohydrodynamic (MHD) Micropump
,”
Lab Chip
,
5
(
4
), pp.
466
471
.
45.
Pozrikidis
,
C.
,
2009
,
Fluid Dynamics: Theory, Computation, and Numerical Simulation
,
Springer
,
Berlin
.
46.
COMSOL AB
,
2014
, Microfluid Module User's Guide.
47.
Wu
,
Y.
,
McKee
,
C.
, and
Armstrong
,
P.
,
1986
, “
Galileo EPD Technical Report 86-01
,” University of Kansas, Lawrence, KS.
48.
McCaig
,
M.
,
1987
,
Permanent Magnets in Theory and Practice
,
Pentacle Press
,
London
.
49.
Qin
,
M.
, and
Bau
,
H. H.
,
2011
, “
When MHD-Based Microfluidics is Equivalent to Pressure-Driven Flow
,”
Microfluid. Nanofluid.
,
10
(
2
), pp.
287
300
.
50.
COMSOL
,
2006
, Multiphysics C 3.3 User's Manual.
51.
Venturoli
,
M.
, and
Boek
,
E. S.
,
2006
. “
Two-Dimensional Lattice-Boltzmann Simulations of Single Phase Flow in a Pseudo Two-Dimensional Micromodel
,”
Physica A
,
362
(
1
), pp.
23
29
.
52.
Boek
,
E. S.
, and
Venturoli
,
M.
,
2010
, “
Lattice-Boltzmann Studies of Fluid Flow in Porous Media With Realistic Rock Geometries
,”
Comput. Math. Appl.
,
59
(
7
), pp.
2305
2314
.
53.
Borggaard
,
J.
,
Burns
,
J.
,
Cliff
,
E.
, and
Schreck
,
S.
,
1998
, “
Computational Methods for Optimal Design and Control
,”
Proceedings of the AFOSR Workshop on Optimal Design and Control
, Arlington, VA, Sept. 30–Oct. 3, 1997, Birkhauser Boston, Boston, MA.
54.
Yang
,
Y.
,
Wang
,
X.
,
Zhang
,
R.
,
Ding
,
T.
, and
Tang
,
R.
,
2006
, “
The Optimization of Pole Arc Coefficient to Reduce Cogging Torque in Surface-Mounted Permanent Magnet Motors
,”
IEEE Trans. Magn.
,
42
(
4
), pp.
1135
1138
.
55.
Han
,
J. S.
,
Rudnyi
,
E. B.
, and
Korvink
,
J. G.
,
2005
, “
Efficient Optimization of Transient Dynamic Problems in MEMS Devices Using Model Order Reduction
,”
J. Micromech. Microeng.
,
15
(
4
), p.
822
.
56.
Krack
,
M.
,
Secanell
,
M.
, and
Mertiny
,
P.
,
2011
, “
Cost Optimization of a Hybrid Composite Flywheel Rotor With a Split-Type Hub Using Combined Analytical/Numerical Models
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
57
73
.
57.
Malak
, Jr.,
R. J.
,
Tucker
,
L.
, and
Paredis
,
C. J.
,
2009
, “
Compositional Modelling of Fluid Power Systems Using Predictive Tradeoff Models
,”
Int. J. Fluid Power
,
10
(
2
), pp.
45
55
.
58.
Malak
,
R.
,
2008
, “
Using Parameterized Efficient Sets to Model Alternatives for Systems Design Decisions
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
59.
Galvan
,
E.
, and
Malak
,
R.
,
2013
, “
A Predictive Pareto Dominance Based Algorithm for Many-Objective Problems
,”
10th World Congress on Structural and Multidisciplinary Optimization (WCSMO)
, Orlando, FL, May 19–24, International Society for Structural and Multidisciplinary Optimisation (ISSMO).
You do not currently have access to this content.