As a result of technological advance and ever-increasing stakeholder expectations, today’s engineering systems are becoming entities of a complex nature. Therefore, understanding and managing the complexity of such systems are becoming increasingly important, in particular during the early stages of the system development process, such as conceptual and preliminary design. In this paper, an analysis to measure the structural complexity of a system is presented. Systems with different architectural configurations (integral, linear-modular, and bus-modular) were analyzed at various levels of system decomposition. The results show that the structural complexity of a system depends largely on the architectural configurations at the lowest level of system decomposition. The sensitivities of each architectural configuration (due to the addition of more connections) were different. A real-life complex system was observed from the architectural configuration and structural complexity point of view.

References

References
1.
Blanchard
,
B. S.
,
Fabrycky
,
W. J.
, and
Fabrycky
,
W. J.
,
1990
,
Systems Engineering and Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Algeddawy
,
T.
, and
Elmaraghy
,
H.
,
2015
, “
Determining Granularity of Changeable Manufacturing Systems Using Changeable Design Structure Matrix and Cladistics
,”
ASME J. Mech. Des.
,
137
(
4
), p.
041702
.
3.
Chiriac
,
N.
,
Holtta-Otto
,
K.
,
Lysy
,
D.
, and
Suh
,
E. S.
,
2011
, “
Level of Modularity and Different Levels of System Granularity
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101007
.
4.
Lindemann
,
U.
,
Maurer
,
M.
, and
Braun
,
T.
,
2009
,
Structural Complexity Management: An Approach for the Field of Product Design
,
Springer
,
Berlin
.
5.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
1995
,
Product Design and Development
,
McGraw-Hill
,
New York
.
6.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications, Engineering Systems
,
MIT Press
,
Cambridge, MA
.
7.
Suh
,
N. P.
,
2001
,
Axiomatic Design: Advances and Applications
(The Mit-Pappalardo Series in Mechanical Engineering),
Oxford University Press
,
New York
.
8.
Baldwin
,
C. Y.
, and
Clark
,
K. B.
,
2000
,
Design Rules
,
MIT Press
,
Cambridge, MA
.
9.
Chen
,
L.
, and
Li
,
S.
,
2005
, “
Analysis of Decomposability and Complexity for Design Problems in the Context of Decomposition
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
545
557
.
10.
Gershenson
,
J. K.
,
Prasad
,
G. J.
, and
Zhang
,
Y.
,
2003
, “
Product Modularity: Definitions and Benefits
,”
J. Eng. Des.
,
14
(
3
), pp.
295
313
.
11.
Simpson
,
T. W.
,
2004
, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
18
(
1
), pp.
3
20
.
12.
Newcomb
,
P. J.
,
Bras
,
B.
, and
Rosen
,
D. W.
,
1998
, “
Implications of Modularity on Product Design for the Life Cycle
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
483
490
.
13.
Suh
,
E. S.
, and
Kott
,
G.
,
2010
, “
Reconfigurable Parallel Printing System Design for Field Performance and Service Improvement
,”
ASME J. Mech. Des.
,
132
(
3
), p.
034505
.
14.
Celona
,
T.
,
Embry-Pelrine
,
C.
, and
Hölttä-Otto
,
K.
,
2007
, “
Are Modular Products Larger Than Integral Products?
International Conference on Engineering Design (ICED 07)
, Paris, France, Paper No. DS42_P_110.
15.
Hölttä-Otto
,
K.
, and
De Weck
,
O.
,
2007
, “
Degree of Modularity in Engineering Systems and Products With Technical and Business Constraints
,”
Concurrent Eng.
,
15
(
2
), pp.
113
126
.
16.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
17.
Miller
,
G. A.
,
1956
, “
The Magical Number Seven Plus or Minus Two: Some Limits on Our Capacity for Processing Information
,”
Psychol. Rev.
,
63
(
2
), pp.
81
97
.
18.
Tilstra
,
A.
,
Seepersad
,
C.
, and
Wood
,
K.
,
2009
, “
Analysis of Product Flexibility for Future Evolution Based on Design Guidelines and a High Definition Design Structurematrix
,”
ASME
Paper No. DETC2009-87118.
19.
Hirtz
,
J.
,
Stone
,
R. B.
,
Mcadams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
20.
Sarkar
,
S.
,
Dong
,
A.
,
Henderson
,
J. A.
, and
Robinson
,
P. A.
,
2014
, “
Spectral Characterization of Hierarchical Modularity in Product Architectures
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011006
.
21.
Suh
,
E. S.
,
Chiriac
,
N.
, and
Hölttä-Otto
,
K.
,
2014
, “
Seeing Complex System through Different Lenses: Impact of Decomposition Perspective on System Architecture Analysis
,”
Syst. Eng.
,
18
(
3
), pp.
229
240
.
22.
Sinha
,
K.
,
2014
, “
Structural Complexity and Its Implications for Design of Cyber Physical Systems
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
23.
Malik
,
F. F.
,
1984
,
Strategie Des Managements Komplexer Systeme: Ein Beitrag Zur Management-Kybernetik EvolutionaüRer Systeme (Schriftenreihe Unternehmung Und UnternehmungsfuüHrung)
,
Haupt
,
Bern
.
24.
Riedl
,
R.
,
2000
,
Strukturen Der KomplexitaüT: Eine Morphologie Des Erkennens Und ErklaüRens
,
Springer
,
Berlin, NY
.
25.
Maier
,
M. W.
, and
Rechtin
,
E.
,
2009
,
The Art of Systems Architecting
,
CRC Press
,
Boca Raton, FL
.
26.
Mccabe
,
T. J.
,
1976
, “
A Complexity Measure
,”
IEEE Trans. Software Eng.
,
2
(
4
), pp.
308
320
.
27.
Kafura
,
D.
, and
Henry
,
S.
,
1981
, “
Software Quality Metrics Based on Inter-Connectivity
,”
J. Syst. Software
,
2
(
2
), pp.
121
131
.
28.
Halstead
,
M. H.
,
1977
,
Elements of Software Science, Operating and Programming Systems Series
,
Elsevier
,
New York
.
29.
Bralla
,
J. G.
,
1986
,
Handbook of Product Design for Manufacturing: A Practical Guide to Low-Cost Production
,
McGraw-Hill
,
New York
.
30.
Meyer
,
M. H.
, and
Lehnerd
,
A. P.
,
1997
,
The Power of Product Platforms: Building Value and Cost Leadership
,
Free Press
,
New York
.
31.
El-Haik
,
B.
, and
Yang
,
K.
,
1999
, “
The Components of Complexity in Engineering Design
,”
IIE Trans.
,
31
(
10
), pp.
925
934
.
32.
Whitney
,
D.
,
Dong
,
Q.
,
Judson
,
J.
, and
Mascoli
,
G.
,
1999
, “
Introducing Knowledge-Based Engineering Into an Interconnected Product Development Process
,” ASME Paper No. DETC99/DTM-8741.
33.
Kreimeyer
,
M.
, and
Lindemann
,
U.
,
2011
,
Complexity Metrics in Engineering Design: Managing the Structure of Design Processes
,
Springer
, Heidelberg,
New York
.
34.
Kortler
,
S.
,
Kreimeyer
,
M.
, and
Lindemann
,
U.
,
2009
, “
A Planarity-Based Complexity Metric
,”
International Conference on Engineering Design (ICED 09)
,
Paper No. DS 58-6
,
Palo Alto
,
CA
, Aug. 24–27.
35.
Sinha
,
K.
, and
De Weck
,
O.
,
2013
, “
Structural Complexity Quantification for Engineered Complex Systems and Implications on System Architecture and Design
,”
ASME
Paper No. DETC2013-12013.
36.
Weyuker
,
E. J.
,
1988
, “
Evaluating Software Complexity-Measures
,”
IEEE Trans. Software Eng.
,
14
(
9
), pp.
1357
1365
.
37.
Erdos
,
P.
, and
Renyi
,
A.
,
1960
, “
The Evolution of Random Graphs
,” Magyar Tud. Akad. Mat. Kutató Int. Közl.,
5
, pp.
17
61
.
38.
Bearden
,
D. A.
,
2003
, “
A Complexity-Based Risk Assessment of Low-Cost Planetary Missions: When is a Mission Too Fast and Too Cheap?
Acta Astronaut.
,
52
(
2–6
), pp.
371
379
.
39.
Suh
,
E. S.
,
Furst
,
M. R.
,
Mihalyov
,
K. J.
, and
De Weck
,
O.
,
2010
, “
Technology Infusion for Complex Systems: A Framework and Case Study
,”
Systems Eng.
,
13
(
2
), pp.
186
203
.
40.
Smaling
,
R.
, and
De Weck
,
O.
,
2007
, “
Assessing Risks and Opportunities of Technology Infusion in System Design
,”
Syst. Eng.
,
10
(
1
), pp.
1
25
.
41.
Holtta
,
K.
,
Suh
,
E. S.
, and
De Weck
,
O.
,
2005
, “
Tradeoff Between Modularity and Performance for Engineered Systems and Products
,”
15th International Conference on Engineering Design: Engineering Design and the Global Economy
, p.
2820
.
You do not currently have access to this content.