Robots play an increasingly important role in the development of minimally invasive surgery (MIS). In MIS assistant robot systems, the remote center of motion (RCM) mechanism is a key component, and is the primary choice as end-effector for such systems. In this paper, first, we propose a new type of synthesis method for RCM mechanisms, which is based on the coupled motion of two DOFs to obtain new virtual center of motion (VCM) mechanisms, and then, through different combinations and configurations of VCM mechanisms, a new family of RCM mechanisms is achieved. Second, one of the obtained RCM mechanisms, which is deemed to have potential application prospects in MIS assistant robot, is investigated in detail, and a prototype is designed and fabricated to verify its feasibility. Finally, preliminary experiments are carried out on the prototype; the results show that, compared with existing ones, the new RCM mechanism's volume can be adjusted according to its required workspace, and it will be more compact when the required workspace is small. It will be an applicable option of end-effector for an MIS assistant robot.

References

References
1.
Williams
, Jr.,
L. F.
,
Chapman
,
W. C.
,
Bonau
,
R. A.
,
McGee
, Jr.,
E. C.
,
Boyd
,
R. W.
, and
Jacobs
,
J. K.
,
1993
, “
Comparison of Laparoscopic Cholecystectomy With Open Cholecystectomy in a Single Center
,”
Am. J. Surg.
,
165
(
4
), pp.
459
465
.
2.
Hu
,
J. C.
,
Gu
,
X.
,
Lipsitz
,
S. R.
,
Barry
,
M. J.
,
D'Amico
,
A. V.
,
Weinberg
,
A. C.
, and
Keating
,
N. L.
,
2009
, “
Comparative Effectiveness of Minimally Invasive versus Open Radical Prostatectomy
,”
JAMA
,
302
(
14
), pp.
1557
1564
.
3.
Fullum
,
T. M.
,
Ladapo
,
J. A.
,
Borah
,
B. J.
, and
Gunnarsson
,
C. L.
,
2010
, “
Comparison of the Clinical and Economic Outcomes Between Open and Minimally Invasive Appendectomy and Colectomy: Evidence From a Large Commercial Payer Database
,”
Surg. Endoscopy
,
24
(
4
), pp.
845
853
.
4.
Taylor
,
R. H.
,
1992
, “
Improved Remote Center of Motion Robot for Surgery
,” U.S. Patent No. 5,397,323.
5.
Beira
,
R.
,
Santos-Carreras
,
L.
,
Rognini
,
G.
,
Bleuler
,
H.
, and
Clavel
,
R.
,
2011
, “
Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
Appl. Bionics Biomech.
,
8
(
2
), pp.
191
208
.
6.
Wilson
,
J. T.
,
Tsao
,
T.-C.
,
Hubschman
,
J.
, and
Schwartz
,
S.
,
2010
, “
Evaluating Remote Centers of Motion for Minimally Invasive Surgical Robots by Computer Vision
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Montreal, Canada, July 6–9, pp.
1413
1418
.
7.
Eldridge
,
B.
,
Gruben
,
K.
,
LaRose
,
D.
,
Funda
,
J.
,
Gomory
,
S.
,
Karidis
,
J.
,
McVicker
,
G.
,
Taylor
,
R.
, and
Anderson
,
J.
,
1996
, “
A Remote Center of Motion Robotic Arm for Computer Assisted Surgery
,”
Robotica
,
14
(
01
), pp.
103
109
.
8.
Madhani
,
A. J.
,
Niemeyer
,
G.
, and
Salisbury
,
J. K.
,
1998
, “
The Black Falcon: A Teleoperated Surgical Instrument for Minimally Invasive Surgery
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Victoria, Canada, Oct. 13–17, pp.
936
944
.
9.
Stoianovici
,
D.
,
Cleary
,
K.
,
Patriciu
,
A.
,
Mazilu
,
D.
,
Stanimir
,
A.
,
Craciunoiu
,
N.
,
Watson
,
V.
, and
Kavoussi
,
L.
,
2003
, “
AcuBot: A Robot for Radiological Interventions
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
927
930
.
10.
Boctor
,
E. M.
,
Webster
, III,
R. J.
,
Mathieu
,
H.
,
Okamura
,
A. M.
, and
Fichtinger
,
G.
,
2004
, “
Virtual Remote Center of Motion Control for Needle Placement Robots
,”
Comput. Aided Surg.
,
9
(
5
), pp.
175
183
.
11.
Schena
,
B.
,
2007
, “
Robotic Manipulator With Remote Center of Motion and Compact Drive
,”
U.S. Patent No. 0,314,181
.https://www.google.com/patents/US20080314181
12.
Brewer
,
R. D.
, and
Salisbury
, Jr.,
J. K.
,
2012
, “
Remote Center of Motion Mechanism and Method of Use
,” U.S. Patent Application PCT/US2012/050360.
13.
Stoianovici
,
D.
,
Petrisor
,
D.
,
Schafer
,
F.
,
Han
,
M.
, and
Kim
,
C.
,
2010
, “
Remote Center of Motion Robot for Medical Image Scanning and Image-Guided Targeting
,”
U.S. Patent Application PCT/US2011/060362
.https://www.google.com/patents/US20140039314
14.
Guthart
,
G.
, and
Salisbury
, Jr.,
J. K.
,
2000
, “
The IntuitiveTM Telesurgery System: Overview and Application
,”
IEEE International Conference on Robotics and Automation
, pp.
618
621
.
15.
Baumann
,
R.
,
Maeder
,
W.
,
Glauser
,
D.
, and
Clavel
,
R.
,
1997
, “
The Pantoscope: A Spherical Remote-Center-of-Motion Parallel Manipulator for Force Reflection
,”
IEEE
International Conference on Robotics and Automation
, Albuquerque, NM, Apr. 20–25, pp.
718
723
.
16.
Faraz
,
A.
, and
Payandeh
,
S.
,
1998
, “
A Robotic Case Study: Optimal Design for Laparoscopic Positioning Stands
,”
Int. J. Rob. Res.
,
17
(
9
), pp.
986
995
.
17.
Stuart
,
J. M.
,
2004
, “
Manipulator
,” U.S. Patent No. 0,024,385.
18.
Madhani
,
A. J.
,
Salisbury
,
J. K.
, and
Niemeyer
,
G. D.
,
2004
, “
Robotic Apparatus
,”
U.S. Patent No. 6,786,896
.https://www.google.com/patents/US6786896
19.
Spaelter
,
U.
,
Moix
,
T.
,
Ilic
,
D.
,
Bajka
,
M.
, and
Bleuler
,
H.
,
2004
, “
A 2-DOF Spherical Remote-Center-of-Motion Manipulator for Haptic Interaction
,”
4th International Conference EuroHaptics
, Munich, Germany, June 5–7, pp.
446
450
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.194&rep=rep1&type=pdf
20.
Kavoussi
,
L. R.
,
Mazilu
,
D.
,
Stoianovici
,
D.
,
Taylor
,
R. H.
, and
Whitcomb
,
L. L.
,
2006
, “
Remote Center of Motion Robotic System and Method
,”
U.S. Patent No. 7,021,173
.https://www.google.com/patents/US7021173
21.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Design of Double Parallelogram Remote-Center-of-Motion Mechanisms
,”
Chin. J. Mech. Eng.
,
43
(
12
), pp.
103
108
.
22.
Hadavand
,
M.
,
Mirbagheri
,
A.
,
Behzadipour
,
S.
, and
Farahmand
,
F.
,
2013
, “
A Novel Remote Center of Motion Mechanism for the Force-Reflective Master Robot of Haptic Tele-Surgery Systems
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
10
(
2
), pp.
129
139
.
23.
Lum
,
M. J.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2004
, “
Kinematic Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot
,”
IEEE
International Conference on Robotics and Automation
, Apr. 26–May 1, pp.
829
834
.
24.
Lum
,
M. J.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2006
, “
Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1440
1445
.
25.
Schena
,
B. M.
,
2007
, “
Center Robotic Arm With Five-Bar Spherical Linkage for Endoscopic Camera
,” U.S. Patent No. 0,173,977.
26.
Fu
,
Y.
,
Niu
,
G.
,
Pan
,
B.
,
Li
,
K.
, and
Wang
,
S.
,
2013
, “
Design and Optimization of Remote Center Motion Mechanism of Minimally Invasive Surgical Robotics
,”
IEEE
International Conference on Robotics and Biomimetics
, Shenzhen, China, Dec. 12–14, pp.
774
779
.
27.
Locke
,
R. C.
, and
Patel
,
R. V.
,
2007
, “
Optimal Remote Center-of-Motion Location for Robotics-Assisted Minimally-Invasive Surgery
,”
IEEE
International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, pp.
1900
1905
.
28.
Yang
,
L.
,
Chng
,
C.
,
Chui
,
C.
, and
Lau
,
D.
,
2010
, “
Model-Based Design Analysis for Programmable Remote Center of Motion in Minimally Invasive Surgery
,”
IEEE
Conference on Robotics Automation and Mechatronics (RAM)
, Singapore, June 28–30, pp.
84
89
.
29.
Dalvand
,
M. M.
, and
Shirinzadeh
,
B.
,
2012
, “
Remote Centre-of-Motion Control Algorithms of 6-RRCRR Parallel Robot Assisted Surgery System
(
PRAMiSS
),”
IEEE International Conference on Robotics and Automation
, Saint Paul, MN, May 14–18, pp.
3401
3406
.
30.
Aghakhani
,
N.
,
Geravand
,
M.
,
Shahriari
,
N.
,
Vendittelli
,
M.
, and
Oriolo
,
G.
,
2013
, “
Task Control With Remote Center of Motion Constraint for Minimally Invasive Robotic Surgery
,”
IEEE
International Conference on Robotics and Automation
, Karlsruhe, Germany, May 6–10, pp.
5807
5812
.
31.
Xu
,
P.
,
Jingjun
,
Y.
, and
Guanghua
,
B. S. Z.
,
2007
, “
Enumeration and Type Synthesis of One-DOF Remote-Center-of-Motion Mechanisms
,”
International Federation for the Promotion of Mechanism and Machine Science Congress
, pp.
18
21
.
32.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
(
12
), pp.
1585
1595
.
33.
Yu
,
J.
,
Pei
,
X.
,
Bi
,
S.
, and
Zong
,
G.
,
2008
, “
A Novel Remote Center of Motion Mechanism Based on Imitation Plotter
,” CN Patent No. 200810223543.4.
34.
Xu
,
P.
,
Jingjun
,
Y.
,
Shusheng
,
B.
, and
Guanghua
,
Z.
,
2009
, “
Type Synthesis for One-Dimensional Remote-Center-of-Motion Mechanisms
,”
J. Mech. Eng.
,
45
(
2
), pp.
144
148
.
35.
Kuo
,
C.-H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
.
36.
Li
,
J.
,
Zhang
,
G.
,
Müller
,
A.
, and
Wang
,
S.
,
2013
, “
A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091009
.
37.
Li
,
J.
,
Zhang
,
G.
,
Xing
,
Y.
,
Liu
,
H.
, and
Wang
,
S.
,
2014
, “
A Class of 2-Degree-of-Freedom Planar Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031014
.
38.
Trevillot
,
V.
,
Sobral
,
R.
,
Dombre
,
E.
,
Poignet
,
P.
,
Herman
,
B.
, and
Crampette
,
L.
,
2013
, “
Innovative Endoscopic Sino-Nasal and Anterior Skull Base Robotics
,”
Int. J. Comput. Assisted Radiol. Surg.
,
8
(
6
), pp.
977
987
.
You do not currently have access to this content.