The failure rate of dynamic systems with random parameters is time-varying even for linear systems excited by a stationary random input. In this paper, we propose a simulation-based method to estimate two types (type I and type II) of time-varying failure rate of dynamic systems. The input stochastic processes are discretized in time and the trajectories of the output stochastic process are calculated. The time of interest is partitioned into a series of time intervals and the saddlepoint approximation (SPA) is employed to estimate the probability of failure in each interval. Type I follows the commonly used definition of failure rate. It is estimated at discrete time intervals using SPA and the correlation information from a properly selected time-dependent copula function. Type II is a proposed new concept of time-varying failure rate. It provides a way to predict the failure rate considering a virtual “good-as-old” repair action of repairable dynamic systems. The effectiveness of the proposed method is illustrated with a vehicle vibration example.

References

References
1.
Finkelstein
,
M.
,
2008
,
Failure Rate Modeling for Reliability and Risk
,
Springer-Verlag
,
London
.
2.
Xie
,
M.
,
Tang
,
Y.
, and
Goh
,
T. N.
,
2002
, “
A Modified Weibull Extension With Bathtub-Shaped Failure Rate Function
,”
Reliab. Eng. Syst. Saf.
,
76
(
3
), pp.
279
285
.
3.
Rosario
,
T.
, and
Patrick
,
L.
,
2008
, “
On-Line Reliability Prediction Via Dynamic Failure Rate Model
,”
IEEE Trans. Reliab.
,
57
(
3
), pp.
452
457
.
4.
Jeff
,
J.
, and
Joe
,
H.
,
2001
, “
Estimation of System Reliability Using a Non-Constant Failure Rate Model
,”
IEEE Trans. Reliab.
,
50
(
3
), pp.
286
288
.
5.
Li
,
Q.
,
Wang
,
C.
, and
Ellingwood
,
B. R.
,
2015
, “
Time-Dependent Reliability of Aging Structures in the Presence of Non-Stationary Loads and Degradation
,”
Struct. Saf.
,
52
, pp.
132
141
.
6.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Values of Stochastic Processes for Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071003
.
7.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
.
8.
Mourelatos
,
Z. P.
,
Majcher
,
M.
,
Pandey
,
V.
, and
Baseski
,
I.
,
2015
, “
Time-Dependent Reliability Analysis Using the Total Probability Theorem
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031405
.
9.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.
10.
Wang
,
Z.
,
Huang
,
H. Z.
, and
Liu
,
Y.
,
2010
, “
A Unified Framework for Integrated Optimization Under Uncertainty
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051008
.
11.
Du
,
X.
, and
Sudjianto
,
A.
,
2004
, “
The First Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.
12.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.
13.
Kuschel
,
N.
, and
Rackwitz
,
R.
,
2000
, “
Optimal Design Under Time-Variant Reliability Constraints
,”
Struct. Saf.
,
22
(
2
), pp.
113
127
.
14.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
.
15.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.
16.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
17.
Savage
,
G. J.
, and
Son
,
Y. K.
,
2009
, “
Dependability-Based Design Optimization of Degrading Engineering Systems
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011002
.
18.
Singh
,
A.
, and
Mourelatos
,
Z. P.
,
2010
, “
On the Time-Dependent Reliability of Non-Monotonic, Non-Repairable Systems
,”
SAE
Paper No. 2010-01-0696.
19.
Jiang
,
C.
,
Huang
,
X. P.
,
Han
,
X.
, and
Zhang
,
D. Q.
,
2014
, “
A Time-Variant Reliability Analysis Method Based on Stochastic Process Discretization
,”
ASME J. Mech. Des.
,
136
(
2
), p.
091009
.
20.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2011
, “
Time-Dependent Reliability of Random Dynamic Systems Using Time-Series Modeling and Importance Sampling
,”
SAE
Paper No. 2011-01-0728.
21.
Wang
,
Z.
,
Mourelatos
,
Z. P.
,
Li
,
J.
,
Singh
,
A.
, and
Baseski
,
I.
,
2014
, “
Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061008
.
22.
Patton
,
A. J.
,
2012
, “
A Review of Copula Models for Economic Time Series
,”
J. Multivar. Anal.
,
110
, pp.
4
18
.
23.
Abegaz
,
F.
, and
Naik-Nimbalkar
,
U. V.
,
2008
, “
Dynamic Copula-Based Markov Time Series
,”
Commun. Stat.: Theory Methods
,
37
(
15
), pp.
2447
2460
.
24.
Noh
,
Y.
,
Choi
,
K. K.
, and
Du
,
Li.
,
2009
, “
Reliability-Based Design Optimization of Problems With Correlated Input Variables Using a Gaussian Copula
,”
Struct. Multidiscip. Optim.
,
38
(
1
), pp.
1
16
.
25.
Noh
,
Y.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2010
, “
Identification of Marginal and Joint CDFs Using Bayesian Method for RBDO
,”
Struct. Multidiscip. Optim.
,
40
, pp.
35
51
.
26.
Jiang
,
C.
,
Zhang
,
W.
,
Han
,
X.
,
Ni
,
B. Y.
, and
Song
,
L. J.
,
2015
, “
A Vine-Copula-Based Reliability Analysis Method for Structures With Multidimensional Correlation
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061405
.
27.
Tang
,
X. S.
,
Li
,
D. Q.
,
Zhou
,
C. B.
,
Phoon
,
K. K.
, and
Zhang
,
L. M.
,
2013
, “
Impact of Copulas for Modeling Bivariate Distributions on System Reliability
,”
Struct. Saf.
,
44
, pp.
80
90
.
28.
Yuen
,
K. V.
,
Wang
,
J.
, and
Au
,
S. K.
,
2007
, “
Application of Saddlepoint Approximation in Reliability Analysis of Dynamic Systems
,”
Earthquake Eng. Eng. Vib.
,
6
(
4
), pp.
391
400
.
29.
Huang
,
B.
, and
Du
,
X.
,
2008
, “
Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Saf.
,
93
(
2
), pp.
325
336
.
30.
Huang
,
B.
,
Du
,
X.
, and
Lakshminarayana
,
R. E.
,
2006
, “
A Saddlepoint Approximation-Based Simulation Method for Uncertainty Analysis
,”
Int. J. Reliab. Saf.
,
1
(
1/2
), pp.
206
224
.
31.
Daniels
,
H. E.
,
1954
, “
Saddlepoint Approximations in Statistics
,”
Ann. Math. Stat.
,
25
(
4
), pp.
631
650
.
32.
Lugannini
,
R.
, and
Rice
,
S. O.
,
1980
, “
Saddlepoint Approximation for the Distribution of the Sum of Independent Random Variables
,”
Adv. Appl. Probab.
,
12
(
2
), pp.
475
490
.
33.
Davison
,
A. C.
, and
Mastropietro
,
D.
,
2009
, “
Saddlepoint Approximation for Mixture Models
,”
Biometrika
,
96
(
2
), pp.
479
486
.
34.
Wang
,
Z.
,
Huang
,
H. Z.
,
Li
,
Y. F.
,
Pang
,
Y.
, and
Xiao
,
N. C.
,
2012
, “
An Approach to System Reliability Analysis With Fuzzy Random Variables
,”
Mech. Mach. Theory
,
52
, pp.
35
46
.
35.
Xi
,
Z. M.
, and
Wang
,
P. F.
,
2012
, “
A Copula-Based Sampling Method for Residual Life Prediction of Engineering Systems Under Uncertainty
,”
ASME
Paper No. DETC2012-71105.
36.
Papaefthymiou
,
G.
, and
Kurowicka
,
D.
,
2009
, “
Using Copulas for Modeling Stochastic Dependence in Power System Uncertainty Analysis
,”
IEEE Trans. Power Syst.
,
24
(
1
), pp.
40
49
.
37.
Cherubini
,
U.
,
Luciano
,
E.
, and
Vecchiato
,
W.
,
2004
,
Copula Methods in Finance
,
Wiley
,
West Sussex, UK
.
38.
Huard
,
D.
,
Evin
,
G.
, and
Favre
,
A. C.
,
2006
, “
Bayesian Copula Selection
,”
Comput. Stat. Data Anal.
,
51
(
2
), pp.
809
822
.
39.
Fermanian
,
J. D.
,
2005
, “
Goodness-of-Fit Tests for Copulas
,”
J. Multivar. Anal.
,
95
(
1
), pp.
119
152
.
40.
Genest
,
C.
, and
Rivest
,
L. P.
,
1993
, “
Statistical Inference Procedures for Bivariate Archimedean Copulas
,”
J. Am. Stat. Assoc.
,
88
(
423
), pp.
1034
1043
.
41.
Rao
,
S. S.
,
2011
,
Mechanical Vibrations
,
5th ed.
,
Prentice Hall
,
London
.
42.
Brighenti
,
C.
, and
Sanz-Bobo
,
M. A.
,
2011
, “
Auto-Regressive Processes Explained by Self-Organized Maps: Application to the Detection of Abnormal Behavior in Industrial Processes
,”
IEEE Trans. Neural Networks
,
22
(
12
), pp.
2078
2090
.
43.
Hasan
,
M. T.
,
2008
, “
Longitudinal Models for Non-Stationary Exponential Data
,”
IEEE Trans. Reliab.
,
57
(
30
), pp.
480
488
.
44.
Ruppert
,
D.
,
2004
,
Statistics and Finance: An Introduction
,
Springer-Verlag
,
New York
.
45.
Chen
,
X.
, and
Fan
,
Y.
,
2006
, “
Estimation of Copula-Based Semiparametric Time Series Models
,”
J. Econ.
,
130
(
2
), pp.
307
335
.
46.
Choros
,
B.
,
Ibragimov
,
R.
, and
Permiakova
,
E.
,
2010
, “
Copula Estimation
,”
Copula Theory and Its Applications
,
Springer
,
Berlin
.
You do not currently have access to this content.