As additive manufacturing (AM) matures, models are beginning to take a more prominent stage in design and process planning. A limitation frequently encountered in AM models is a lack of indication about their precision and accuracy. Often overlooked, model uncertainty is required for validation of AM models, qualification of AM-produced parts, and uncertainty management. This paper presents a discussion on the origin and propagation of uncertainty in laser powder bed fusion (L-PBF) models. Four sources of uncertainty are identified: modeling assumptions, unknown simulation parameters, numerical approximations, and measurement error in calibration data. Techniques to quantify uncertainty in each source are presented briefly, along with estimation algorithms to diminish prediction uncertainty with the incorporation of online measurements. The methods are illustrated with a case study based on a thermal model designed for melt pool width predictions. Model uncertainty is quantified for single track experiments, and the effect of online estimation in overhanging structures is studied via simulation.

References

References
1.
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1990
, “
Solid Freeform Fabrication: An Advanced Manufacturing Approach
,”
International Solid Freeform Fabrication Symposium
, pp.
1
7
.
2.
Moser
,
D.
,
Beaman
,
J.
,
Fish
,
S.
, and
Murthy
,
J.
,
2014
, “
Multi-Layer Computational Modeling of Selective Laser Sintering Processes
,”
ASME
Paper No. IMECE2014-37535.
3.
Ma
,
L.
,
Fong
,
J.
,
Lane
,
B.
,
Moylan
,
S.
,
Filliben
,
J.
,
Heckert
,
A.
, and
Levine
,
L.
,
2015
, “
Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion
,”
International Solid Freeform Fabrication Symposium
, pp.
219
228
.http://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-18-Ma.pdf
4.
Kamath
,
C.
,
2016
, “
Data Mining and Statistical Inference in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
, published online.
5.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
3rd International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, Sept. 24–29, pp.
521
527
.
6.
Gockel
,
J.
,
Beuth
,
J.
, and
Taminger
,
K.
,
2014
, “
Integrated Control of Solidification Microstructure and Melt Pool Dimensions in Electron Beam Wire Feed Additive Manufacturing of Ti-6Al-4V
,”
Addit. Manuf.
,
1–4
, pp.
119
126
.
7.
Oden
,
T.
,
Moser
,
R.
, and
Ghattas
,
O.
,
2010
, “
Computer Predictions With Quantified Uncertainty—Part I
,”
SIAM News
,
43
(
9
), p.
1842
.https://www.siam.org/pdf/news/1842.pdf
8.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
9.
Riedlbauer
,
D.
,
Scharowsky
,
T.
,
Singer
,
R. F.
,
Steinmann
,
P.
,
Körner
,
C.
, and
Mergheim
,
J.
,
2016
, “
Macroscopic Simulation and Experimental Measurement of Melt Pool Characteristics in Selective Electron Beam Melting of Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
, published online.
10.
Roberts
,
I. A.
,
2012
, “
Investigation of Residual Stresses in the Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Ph.D. thesis
, University of Wolverhampton, Wolverhampton, UK.http://wlv.openrepository.com/wlv/handle/2436/254913
11.
Moser
,
D.
,
Pannala
,
S.
, and
Murthy
,
J.
,
2015
, “
Computation of Effective Radiative Properties of Powders for Selective Laser Sintering Simulations
,”
JOM
,
67
(
5
), pp.
1194
1202
.
12.
Cheng
,
B.
,
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061018
.
13.
Mani
,
M.
,
Lane
,
B.
,
Donmez
,
A.
,
Feng
,
S.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
, “
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,”
National Institute of Standards and Technology
, Gaithersburg, MD, Standard No. NISTIR 8036.
14.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,”
American Society of Mechanical Engineers
, New York, Standard No. ASME V&V 20-2009.https://www.asme.org/products/codes-standards/v-v-20-2009-standard-verification-validation
15.
Devesse
,
W.
,
De Baere
,
D.
, and
Guillaume
,
P.
,
2014
, “
The Isotherm Migration Method in Spherical Coordinates With a Moving Heat Source
,”
Int. J. Heat Mass Transfer
,
75
, pp.
726
735
.
16.
Montgomery
,
C.
,
Beuth
,
J.
,
Sheridan
,
L.
, and
Klingbeil
,
N.
,
2015
, “
Process Mapping of Inconel 625 in Laser Powder Bed Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
, pp.
1195
1204
.http://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-97-Montgomery.pdf
17.
Thermo-Calc
,
2014
,
Thermo-Calc AB Version 3.1
, Thermo-Calc, Stockholm, Sweden.http://www.thermocalc.com
18.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.
You do not currently have access to this content.