Multidisciplinary analysis (MDA) is nowadays a powerful tool for analysis and optimization of complex systems. The present study is interested in the case where MDA involves feedback loops between disciplines (i.e., the output of a discipline is the input of another and vice versa). When the models for each discipline involve non-negligible modeling uncertainties, it is important to be able to efficiently propagate these uncertainties to the outputs of the MDA. The present study introduces a polynomial chaos expansion (PCE)-based approach to propagate modeling uncertainties in MDA. It is assumed that the response of each disciplinary solver is affected by an uncertainty modeled by a random field over the design and coupling variables space. A semi-intrusive PCE formulation of the problem is proposed to solve the corresponding nonlinear stochastic system. Application of the proposed method emphasizes an important particular case in which each disciplinary solver is replaced by a surrogate model (e.g., kriging). Three application problems are treated, which show that the proposed approach can approximate arbitrary (non-Gaussian) distributions very well at significantly reduced computational cost.

References

References
1.
Chittick
,
I. R.
, and
Martins
,
J. R. R. A.
,
2008
, “
An Asymmetric Suboptimization Approach to Aerostructural Optimization
,”
Optim. Eng.
,
10
(
1
), pp.
133
152
.
2.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
3.
Liang
,
C.
,
Mahadevan
,
S.
, and
Sankararaman
,
S.
,
2015
, “
Stochastic Multidisciplinary Analysis Under Epistemic Uncertainty
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021404
.
4.
Zang
,
T.
,
Hemsch
,
M.
,
Hilburger
,
M.
,
Kenny
,
S.
,
Luckring
,
J.
,
Maghami
,
P.
,
Padula
,
S.
, and
Stroud
,
W. J.
,
2002
, “
Needs and Opportunities for Uncertainty Based Multidisciplinary Design Methods for Aerospace Vehicles
,” NASA Langley Research Center,
Technical Report No. TM-2002-211462
.http://ntrs.nasa.gov/search.jsp?R=20020063596
5.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
6.
Brevault
,
L.
,
Balesdent
,
M.
,
Bérend
,
N.
, and
Le Riche
,
R.
,
2015
, “
Decoupled MDO Formulation for Interdisciplinary Coupling Satisfaction Under Uncertainty
,”
AIAA J.
,
54
(
1
), pp.
186
205
.
7.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2012
, “
Likelihood-Based Approach to Multidisciplinary Analysis Under Uncertainty
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031008
.
8.
Leotardi
,
C.
,
Diez
,
M.
,
Serani
,
A.
,
Iemma
,
U.
, and
Campana
,
E. F.
,
2014
, “
A Framework for Efficient Simulation-Based Multidisciplinary Robust Design Optimization With Application to a Keel Fin of a Racing Sailboat
,”
International Conference on Engineering and Applied Sciences Optimization
(
OPTI2014
),
M.
Papadrakakis
,
M. G.
Karlaftis
, and
N. D.
Lagaros
, eds., Kos Island, Greece, June 4–6, pp.
1177
1193
.http://s3.amazonaws.com/academia.edu.documents/39293386/0046353965db274864111411.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1468946783&Signature=18cJ7qYifM5aTSgwwAdbNSWUdPc%3D&response-content-disposition=inline%3B%20filename%3DA_framework_for_efficient_simulation-bas.pdf
9.
Koch
,
P.
,
Wujek
,
B.
,
Golovidov
,
O.
, and
Simpson
,
T.
,
2002
, “
Facilitating Probabilistic Multidisciplinary Design Optimization Using Kriging Approximation Models
,”
AIAA
Paper No. 2002-5415.
10.
Oakley
,
D. R.
,
Sues
,
R. H.
, and
Rhodes
,
G. S.
,
1998
, “
Performance Optimization of Multidisciplinary Mechanical Systems Subject to Uncertainties
,”
Probab. Eng. Mech.
,
13
(
1
), pp.
15
26
.
11.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
,
Hoboken, NJ
.
12.
Jaulin
,
L.
,
2001
,
Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics
, Vol.
1
,
Springer-Verlag
,
London
.
13.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
.
14.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
, Vol.
1
,
Princeton University Press
,
Princeton, NJ
.
15.
Dubois
,
D.
, and
Prade
,
H.
,
2012
,
Possibility Theory: An Approach to Computerized Processing of Uncertainty
,
Springer
,
New York
.
16.
Ferson
,
S.
,
Joslyn
,
C. A.
,
Helton
,
J. C.
,
Oberkampf
,
W. L.
, and
Sentz
,
K.
,
2004
, “
Summary From the Epistemic Uncertainty Workshop: Consensus Amid Diversity
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
355
369
.
17.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.
18.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
19.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York
.
20.
Soize
,
C.
, and
Ghanem
,
R.
,
2004
, “
Physical Systems With Random Uncertainties: Chaos Representations With Arbitrary Probability Measure
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
395
410
.
21.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
22.
Poëtte
,
G.
, and
Lucor
,
D.
,
2012
, “
Non Intrusive Iterative Stochastic Spectral Representation With Application to Compressible Gas Dynamics
,”
J. Comput. Phys.
,
231
(
9
), pp.
3587
3609
.
23.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2005
, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
(
2
), pp.
617
642
.
24.
Lebrun
,
R.
, and
Dutfoy
,
A.
,
2009
, “
A Generalization of the Nataf Transformation to Distributions With Elliptical Copula
,”
Probab. Eng. Mech.
,
24
(
2
), pp.
172
178
.
25.
Lebrun
,
R.
, and
Dutfoy
,
A.
,
2009
, “
Do Rosenblatt and Nataf Isoprobabilistic Transformations Really Differ?
,”
Probab. Eng. Mech.
,
24
(
4
), pp.
577
584
.
26.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Mine Evaluations and Allied Problems at the Witwatersrand
,” Master's thesis, University of Witwatersrand, Johannesburg, South Africa.
27.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning),
MIT Press
,
Cambridge, MA
.
28.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.http://www.jmlr.org/papers/v12/pedregosa11a.html
29.
Sellar
,
R. S.
,
Batill
,
S. M.
, and
Renaud
,
J. E.
,
1996
, “
Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design
,”
AIAA
Paper No. 96-0714.
30.
Shizgal
,
B. D.
, and
Jung
,
J.-H.
,
2003
, “
Towards the Resolution of the Gibbs Phenomena
,”
J. Comput. Appl. Math.
,
161
(
1
), pp.
41
65
.
31.
Jaeger
,
L.
,
Gogu
,
C.
,
Segonds
,
S.
, and
Bes
,
C.
,
2013
, “
Aircraft Multidisciplinary Design Optimization Under Both Model and Design Variables Uncertainty
,”
J. Aircr.
,
50
(
2
), pp.
528
538
.
32.
Ruijgrok
,
G.
,
1990
,
Elements of Airplane Performance
,
Delft University Press
,
Delft, The Netherlands
.
33.
Lefebvre
,
T.
,
Schmollgruber
,
P.
,
Blondeau
,
C.
, and
Carrier
,
G.
,
2012
, “
Aircraft Conceptual Design in a Multi-Level, Multi-Fidelity, Multi-Disciplinary Optimization Process
,” 28th
ICAS
Congress
, Brisbane, Australia, ICAS2012-1.6.4.https://www.researchgate.net/profile/Gerald_Carrier/publication/256842085_Aircraft_Conceptual_Design_In_A_Multi-Level_Multi-Fidelity_Multi-Disciplinary_Optimization_Process/links/0c960523ee68f917c1111411.pdf
34.
Sobieszczanski
,
J.
,
Agte
,
J.
, and
Sandusky
,
R.
,
1998
, “
Bi-Level Integrated System Synthesis (BLISS)
,” Technical Report No. NASA/TM-1998-20871.
35.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1
), pp.
271
280
.
You do not currently have access to this content.