Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as a function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.

References

References
1.
Smith
,
N.
, and
Mahadevan
,
S.
,
2003
, “
Probabilistic Methods for Aerospace System Conceptual Design
,”
J. Spacecr. Rockets
,
40
(
3
), pp.
411
418
.
2.
Antonsson
,
E. K.
, and
Otto
,
K. N.
,
1995
, “
Imprecision in Engineering Design
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
25
32
.
3.
Nikolaidis
,
E.
,
Mourelatos
,
Z. P.
, and
Pandey
,
V.
,
2011
,
Design Decisions Under Uncertainty With Limited Information: Structures and Infrastructures Book Series
, Vol.
7
,
CRC Press
, Boca Raton, FL.
4.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Sallaberry
,
C. J.
, and
Storlie
,
C. B.
,
2006
, “
Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
91
(
10
), pp.
1175
1209
.
5.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
6.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
7.
Niederreiter
,
H.
,
1992
,
Random Number Generation and Quasi-Monte Carlo Method
(SIAMCBMS-NSF Regional Conference Series in Applied Mathematics), Vol. 63, SIAM, Philadelphia, PA.
8.
Simpson
,
T. W.
,
Lin
,
D. K.
, and
Chen
,
W.
,
2001
, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
,
2
(
3
), pp.
209
240
.http://www.personal.psu.edu/users/j/x/jxz203/lin/Lin_pub/2001_IJRA.pdf
9.
Eldred
,
M. S.
,
Giunta
,
A. A.
, and
Collis
,
S. S.
,
2004
, “
Second-Order Corrections for Surrogate-Based Optimization With Model Hierarchies
,”
AIAA
2004-4457.
10.
Antoulas
,
A. C.
,
2005
,
Approximation of Large-Scale Dynamical Systems
, Vol.
6
, SIAM, Philadelphia, PA.
11.
Gu
,
X. S.
,
Renaud
,
J. E.
, and
Penninger
,
C. L.
,
2006
, “
Implicit Uncertainty Propagation for Robust Collaborative Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
1001
1013
.
12.
McDonald
,
M.
, and
Mahadevan
,
S.
,
2008
, “
Uncertainty Quantification and Propagation for Multidisciplinary System Analysis
,”
AIAA
Paper No. 2008-6038.
13.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
,
2006
, “
Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
503
508
.
14.
Mahadevan
,
S.
, and
Smith
,
N.
,
2006
, “
Efficient First-Order Reliability Analysis of Multidisciplinary Systems
,”
Int. J. Reliab. Saf.
,
1
(
1–2
), pp.
137
154
.
15.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.
16.
Saltelli
,
A.
,
2008
,
Global Sensitivity Analysis: The Primer
.
Wiley
,
Hoboken, NJ
.
17.
Saltelli
,
A.
, and
Tarantola
,
S.
,
2002
, “
On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal
,”
J. Am. Stat. Assoc.
,
97
(
459
), pp.
702
709
.
18.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
.
19.
Saltelli
,
A.
, and
Marivoet
,
J.
,
1990
, “
Non-Parametric Statistics in Sensitivity Analysis for Model Output: A Comparison of Selected Techniques
,”
Reliab. Eng. Syst. Saf.
,
28
(
2
), pp.
229
253
.
20.
Borgonovo
,
E.
,
2006
, “
Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches
,”
Risk Anal.
,
26
(
5
), pp.
1349
1361
.
21.
Borgonovo
,
E.
,
2007
, “
A New Uncertainty Importance Measure
,”
Reliab. Eng. Syst. Saf.
,
92
(
6
), pp.
771
784
.
22.
Chun
,
M.-H.
,
Han
,
S.-J.
, and
Tak
,
N.-I.
,
2000
, “
An Uncertainty Importance Measure Using a Distance Metric for the Change in a Cumulative Distribution Function
,”
Reliab. Eng. Syst. Saf.
,
70
(
3
), pp.
313
321
.
23.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K.-S.
,
1999
, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
,
41
(
1
), pp.
39
56
.
24.
Oakley
,
J. E.
, and
O’Hagan
,
A.
,
2004
, “
Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
66
(
3
), pp.
751
769
.
25.
Allaire
,
D. L.
, and
Willcox
,
K. E.
,
2012
, “
A Variance-Based Sensitivity Index Function for Factor Prioritization
,”
Reliab. Eng. Syst. Saf.
,
107
, pp.
107
114
.
26.
Sobol
,
I. M.
,
2003
, “
Theorems and Examples on High Dimensional Model Representation
,”
Reliab. Eng. Syst. Saf.
,
79
(
2
), pp.
187
193
.
27.
McRae
,
G. J.
,
Tilden
,
J. W.
, and
Seinfeld
,
J. H.
,
1982
, “
Global Sensitivity Analysis Computational Implementation of the Fourier Amplitude Sensitivity Test (Fast)
,”
Comput. Chem. Eng.
,
6
(
1
), pp.
15
25
.
28.
Saltelli
,
A.
, and
Bolado
,
R.
,
1998
, “
An Alternative Way to Compute Fourier Amplitude Sensitivity Test (Fast)
,”
Comput. Stat. Data Anal.
,
26
(
4
), pp.
445
460
.
29.
Rabitz
,
H.
,
Aliş
,
Ö. F.
,
Shorter
,
J.
, and
Shim
,
K.
,
1999
, “
Efficient Input–Output Model Representations
,”
Comput. Phys. Commun.
,
117
(
1
), pp.
11
20
.
30.
Rabitz
,
H.
, and
Aliş
,
Ö. F.
,
1999
, “
General Foundations of High-Dimensional Model Representations
,”
J. Math. Chem.
,
25
(
2–3
), pp.
197
233
.
31.
Aliş
,
Ö. F.
, and
Rabitz
,
H.
,
2001
. “
Efficient Implementation of High Dimensional Model Representations
,”
J. Math. Chem.
,
29
(
2
), pp.
127
142
.
32.
Smith
,
R.
,
2014
.
Uncertainty Quantification: Theory, Implementation, and Applications
,
SIAM
,
Philadelphia, PA
.
33.
Li
,
G.
,
Wang
,
S.-W.
, and
Rabitz
,
H.
,
2002
, “
Practical Approaches to Construct RS-HDMR Component Functions
,”
J. Phys. Chem. A
,
106
(
37
), pp.
8721
8733
.
34.
Wang
,
S.-W.
,
Georgopoulos
,
P. G.
,
Li
,
G.
, and
Rabitz
,
H.
,
2003
, “
Random Sampling-High Dimensional Model Representation (RS-HDMR) With Nonuniformly Distributed Variables: Application to an Integrated Multimedia/Multipathway Exposure and Dose Model for Trichloroethylene
,”
J. Phys. Chem. A
,
107
(
23
), pp.
4707
4716
.
35.
Li
,
G.
, and
Rabitz
,
H.
,
2012
, “
General Formulation of HDMR Component Functions With Independent and Correlated Variables
,”
J. Math. Chem.
,
50
(
1
), pp.
99
130
.
36.
Allaire
,
D. L.
,
2009
, “
Uncertainty Assessment of Complex Models With Application to Aviation Environmental Systems
,”
Ph.D thesis
, Massachusetts Institute of Technology, Cambridge, MA.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.208.2905&rep=rep1&type=pdf
37.
Ghanem
,
R.
, and
Spanos
,
P.
,
1990
, “
Polynomial Chaos in Stochastic Finite Elements
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
197
202
.
38.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
, Dover Publications, Minneola, NY.
39.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
40.
Ratto
,
M.
,
Pagano
,
A.
, and
Young
,
P. C.
,
2009
, “
Non-Parametric Estimation of Conditional Moments for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
2
), pp.
237
243
.
41.
Drela
,
M.
,
2010
, “
N3 Aircraft Concept Designs and Trade Studies—Appendix
,” Technical Report No. NASA CR-2010-216794.
42.
Uranga
,
A.
,
Drela
,
M.
,
Greitzer
,
E. M.
,
Titchener
,
N. A.
,
Lieu
,
M. K.
,
Siu
,
N. M.
,
Huang
,
A. C.
,
Gatlin
,
G. M.
, and
Hannon
,
J. A.
,
2014
, “
Preliminary Experimental Assessment of the Boundary Layer Ingestion Benefit for the D8 Aircraft
,”
AIAA
Paper No. 2014-0906.
43.
Opgenoord
,
M. M. J.
,
2016
, “
Uncertainty Budgeting Methods for Conceptual Aircraft Design
,”
SM thesis
, Massachusetts Institute of Technology, Cambridge, MA.http://dspace.mit.edu/handle/1721.1/103423
44.
Amaral
,
S.
,
2015
, “
A Decomposition-Based Approach to Uncertainty Quantification of Multicomponent Systems
,”
Ph.D thesis
, Massachusetts Institute of Technology, Cambridge, MA.http://hdl.handle.net/1721.1/101490
45.
Ng
,
L. W.-T.
,
2013
, “
Multifidelity Approaches for Design Under Certainty
,” Ph.D thesis, Massachusetts Institute of Technology, Cambridge, MA.
46.
Rahman
,
S.
,
2014
, “
A Generalized ANOVA Dimensional Decomposition for Dependent Probability Measures
,”
SIAM/ASA J. Uncertainty Quantif.
,
2
(
1
), pp.
670
697
.
You do not currently have access to this content.