Uncertainty is unavoidable in engineering design, which may result in variations in the objective functions and/or constraints. The former may degrade the designed performance while the latter can even change the feasibility of the obtained optimal solutions. Taking uncertainty into consideration, robust optimization (RO) algorithms aim to find optimal solutions that are also insensitive to uncertainty. Uncertainty may include variation in parameters and/or design variables, inaccuracy in simulation models used in design problems, and other possible errors. Most existing RO algorithms only consider uncertainty in parameters, but overlook that in simulation models by assuming that the simulation model used can always provide identical outputs to those of the real physical systems. In this paper, we propose a new RO framework using Gaussian processes, considering not only parameter uncertainty but also uncertainty in simulation models. The consideration of model uncertainty in RO could reduce the risk for the obtained robust optimal designs becoming infeasible even if the parameter uncertainty has been considered. Two test examples with different degrees of complexity are utilized to demonstrate the applicability and effectiveness of our proposed algorithm.

Reference

Reference
1.
Du
,
X.
, and
Chen
,
W.
,
2000
, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.
2.
Du
,
X.
, and
Chen
,
W.
,
2000
, “
Methodology for Managing the Effect of Uncertainty in Simulation-Based Design
,”
AIAA J
,
38
(
8
), pp.
1471
1478
.
3.
Taguchi
,
G.
,
1978
, “
Performance Analysis Design
,”
Int. J. Prod. Res.
,
16
(
6
), pp.
521
530
.
4.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K. L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
5.
Jung
,
D. H.
, and
Lee
,
B. C.
,
2002
, “
Development of a Simple and Efficient Method for Robust Optimization
,”
Int. J. Numer. Methods Eng.
,
53
(
9
), pp.
2201
2215
.
6.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
,
2006
, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.
7.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2011
, “
Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061002
.
8.
Hoffman
,
F. O.
, and
Hammonds
,
J. S.
,
1994
, “
Propagation of Uncertainty in Risk Assessments: the Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability
,”
Risk Anal.
,
14
(
5
), pp.
707
712
.
9.
Oberkampf
,
W. L.
,
Helton
,
J. C.
,
Joslyn
,
C. A.
,
Wojtkiewicz
,
S. F.
, and
Ferson
,
S.
,
2004
, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
11
19
.
10.
Oberkampf
,
W. L.
,
Helton
,
J. C.
, and
Sentz
,
K.
,
2001
, “
Mathematical Representation of Uncertainty
,”
AIAA
Paper No. 2001-1645.
11.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
39
71
.
12.
Du
,
X.
,
2008
, “
Unified Uncertainty Analysis With the First Order Reliability Method
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091401
.
13.
Beyer
,
H. G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33
), pp.
3190
3218
.
14.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton: Princeton University Press
, Princeton, NJ.
15.
Klir
,
G. J.
,
2004
, “
Generalized Information Theory: Aims, Results, and Open Problems
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
21
38
.
16.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
.
17.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
,
1993
, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
74
80
.
18.
Janak
,
S. L.
,
Lin
,
X.
, and
Floudas
,
C. A.
,
2007
, “
A New Robust Optimization Approach for Scheduling Under Uncertainty: II. Uncertainty With Known Probability Distribution
,”
Comput. Chem. Eng.
,
31
(
3
), pp.
171
195
.
19.
Li
,
M.
, and
Azarm
,
S.
,
2008
, “
Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081402
.
20.
Zhou
,
J. H.
,
Cheng
,
S.
, and
Li
,
M.
,
2012
, “
Sequential Quadratic Programming for Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100913
.
21.
Zhou
,
J. H.
, and
Li
,
M.
,
2013
, “
Advanced Robust Optimization With Interval Uncertainty Using a Single-Looped Structure and Sequential Quadratic Programming
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021008
.
22.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Statistical Science
, Institute of Mathematical Statistics, Beachwood, OH.
23.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
24.
Higdon
,
D.
,
Kennedy
,
M.
,
Cavendish
,
J. C.
,
Cafeo
,
J. A.
, and
Ryne
,
R. D.
,
2004
, “
Combining Field Data and Computer Simulations for Calibration and Prediction
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
448
466
.
25.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
26.
AIAA Standards Committee,
1998
, “
AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,” AIAA, Reston, VA, AIAA Standard No. G-077-1998.
27.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
,
2004
, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
ASME Appl. Mech. Rev.
,
57
(
5
), pp.
345
384
.
28.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C. H.
, and
Tu
,
J.
,
2007
, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
(
2
), pp.
138
154
.
29.
Chen
,
W.
,
Xiong
,
Y.
,
Tsui
,
K.-L.
, and
Wang
,
S.
,
2008
, “
A Design-Driven Validation Approach Using Bayesian Prediction Models
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021101
.
30.
Wang
,
S.
,
Chen
,
W.
, and
Tsui
,
K. L.
,
2009
, “
Bayesian Validation of Computer Models
,”
Technometrics
,
51
(
4
), pp.
439
451
.
31.
Zhang
,
S.
,
Zhu
,
P.
,
Chen
,
W.
, and
Arendt
,
P. D.
,
2013
, “
Concurrent Treatment of Parametric Uncertainty and Metamodeling Uncertainty in Robust Design
,”
Struct. Multidiscip. Optim.
,
47
(
1
), pp.
63
76
.
32.
Qian
,
P. Z.
, and
Wu
,
C. J.
,
2008
, “
Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments
,”
Technometrics
,
50
(
2
), pp.
192
204
.
33.
Jiang
,
Z.
,
Chen
,
W.
, and
Apley
,
D. W.
,
2013
, “
Preposterior Analysis to Select Experimental Responses for Improving Identifiability in Model Uncertainty Quantification
,”
ASME
Paper No. DETC2013-12457.
34.
Hu
,
Z.
,
Du
,
X.
,
Kolekar
,
N. S.
, and
Banerjee
,
A.
,
2014
, “
Robust Design With Imprecise Random Variables and Its Application in Hydrokinetic Turbine Optimization
,”
Eng. Optim.
,
46
(
3
), pp.
393
419
.
35.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
, Cambridge, MA.
36.
Conti
,
S.
,
Gosling
,
J. P.
,
Oakley
,
J. E.
, and
O'hagan
,
A.
,
2009
, “
Gaussian Process Emulation of Dynamic Computer Codes
,”
Biometrika
,
96
(
3
), pp.
663
676
.
37.
Conti
,
S.
, and
O'hagan
,
A.
,
2010
, “
Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models
,”
J. Stat. Plann. Inference
,
140
(
3
), pp.
640
651
.
38.
Arendt
,
P. D.
,
Apley
,
D. W.
,
Chen
,
W.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2012
, “
Improving Identifiability in Model Calibration Using Multiple Responses
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100909
.
39.
Montgomery
,
D. C.
,
2008
,
Design and Analysis of Experiments
,
Wiley
, Hoboken, NJ.
40.
Arendt
,
P. D.
,
2012
, “
Quantification and Mitigation of Multiple Sources of Uncertainty in Simulation Based Design
,”
Ph.D. dissertation
, Northwestern University, Evanston, IL.http://gradworks.umi.com/35/27/3527502.html
41.
Apley
,
D. W.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
945
958
.
42.
Gunawan
,
S.
,
2004
, “
Parameter Sensitivity Measures for Single Objective, Multi-Objective, and Feasibility Robust Design Optimization
,”
Ph.D. dissertation
, Department of Mechanical Engineering, College Park, MD.http://drum.lib.umd.edu/handle/1903/1542
43.
Brynjarsdóttir
,
J.
, and
O'Hagan
,
A.
,
2014
, “
Learning about Physical Parameters: The Importance of Model Discrepancy
,”
Inverse Probl.
,
30
(
11
), p.
114007
.
44.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
.
45.
Brochu
,
E.
,
Cora
,
V. M.
, and
De Freitas
,
N.
,
2010
, “
A Tutorial on Bayesian Optimization of Expensive Cost Functions, With Application to Active User Modeling and Hierarchical Reinforcement Learning
,”
e-print arXiv:1012.2599
.
46.
Marzat
,
J.
,
Walter
,
E.
, and
Piet-Lahanier
,
H.
,
2013
, “
Worst-Case Global Optimization of Black-Box Functions Through Kriging and Relaxation
,”
J. Global Optim.
,
55
(
4
), pp.
707
727
.
47.
ur Rehman
,
S.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2014
, “
Efficient Kriging-Based Robust Optimization of Unconstrained Problems
,”
J. Comput. Sci.
,
5
(
6
), pp.
872
881
.
48.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2013
, “
Objective-Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051005
.
49.
Du
,
X.
,
Venigella
,
P. K.
, and
Liu
,
D.
,
2009
, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
.
You do not currently have access to this content.