Validating dynamic engineering models is critically important in practical applications by assessing the agreement between simulation results and experimental observations. Though significant progresses have been made, the existing metrics lack the capability of managing uncertainty in both simulations and experiments. In addition, it is challenging to validate a dynamic model aggregately over both the time domain and a model input space with data at multiple validation sites. To overcome these difficulties, this paper presents an area-based metric to systemically handle uncertainty and validate computational models for dynamic systems over an input space by simultaneously integrating the information from multiple validation sites. To manage the complexity associated with a high-dimensional data space, eigenanalysis is performed for the time series data from simulations at each validation site to extract the important features. A truncated Karhunen–Loève (KL) expansion is then constructed to represent the responses of dynamic systems, resulting in a set of uncorrelated random coefficients with unit variance. With the development of a hierarchical data-fusion strategy, probability integral transform (PIT) is then employed to pool all the resulting random coefficients from multiple validation sites across the input space into a single aggregated metric. The dynamic model is thus validated by calculating the cumulative area difference of the cumulative density functions. The proposed model validation metric for dynamic systems is illustrated with a mathematical example, a supported beam problem with stochastic loads, and real data from the vehicle occupant-restraint system.

References

References
1.
Thacker
,
B. H.
,
Doebling
,
S. W.
,
Hemez
,
F. M.
,
Anderson
,
M. C.
,
Pepin
,
J. E.
, and
Rodriguez
,
E. A.
,
2004
, “
Concepts of Model Verification and Validation
,” National Laboratory, Los Alamos, NM, Report No. LA-14167.
2.
DOD
,
1996
, “
Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide
,” Department of Defense, Alexandria, VA.
3.
DOE, 2000
, “
Accelerated Strategic Computing Initiative (ASCI) Program Plan
,” Department of Energy, Washington, DC, Report No. DOE/DP-99-000010592.
4.
AIAA
,
1998
, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,” American Institute of Aeronautics and Astronautics, Reston, VA, Standard No. AIAA-G-077-1998.
5.
ASME
,
2006
, “
Guide for Verification and Validation in Computational Solid Mechanics
,” American Society of Mechanical Engineers, New York, Standard No. ASME V V 10-2006.
6.
Chen
,
W.
,
Baghdasaryan
,
L.
,
Buranathiti
,
T.
, and
Cao
,
J.
,
2004
, “
Model Validation Via Uncertainty Propagation and Data Transformation
,”
AIAA J.
,
42
(
7
), pp.
1406
1415
.
7.
Mahadevan
,
S.
, and
Rebba
,
R.
,
2005
, “
Validation of Reliability Computational Models Using Bayes Networks
,”
Reliab. Eng. Syst. Saf.
,
87
(
2
), pp.
223
232
.
8.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H. Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071005
.
9.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
,
2004
, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
ASME Appl. Mech. Rev.
,
57
(
5
), pp.
345
384
.
10.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J R. Stat. Soc. Ser. B, Stat. Methodol.
,
63
(
3
), pp.
425
464
.
11.
Mayer
,
D. G.
, and
Butler
,
D. G.
,
1993
Statistical Validation
,”
Ecol. Modell.
,
68
(
1–2
), pp.
21
32
.
12.
Hills
,
R. G.
, and
Trucano
,
T. G.
,
1999
, “
Statistical Validation of Engineering and Scientific Models: Background
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND 99-1256.
13.
Sugawara
,
Y.
,
Shinohara
,
K.
, and
Kobayashi
,
N.
,
2009
, “
Quantitative Validation of Dynamic Stiffening Represented by Absolute Nodal Coordinate Formulation
,”
ASME
Paper No. DETC2009-86955.
14.
Marden
,
J.
,
2000
, “
Hypothesis Testing: From p Values to Bayes Factors
,”
J. Am. Stat. Assoc.
,
95
(
452
), pp.
1316
1320
.
15.
O'Hagan
,
A.
,
1995
, “
Fractional Bayes Factors for Model Comparison
,”
J. R. Stat. Soc. Ser. B
,
57
(
1
), pp.
99
138
.
16.
Kass
,
R.
, and
Raftery
,
A.
,
1995
, “
Bayes Factors
,”
J. Am. Stat. Assoc.
,
90
(
430
), pp.
773
795
.
17.
Srivastava
,
M. S.
,
2002
,
Methods of Multivariate Statistics
,
1st ed.
,
Wiley
,
New York
.
18.
Oberkampf
,
W.
, and
Barone
,
M.
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.
19.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2008
, “
Computational Methods for Model Reliability Assessment
,”
Reliab. Eng. Syst. Saf.
,
93
(
8
), pp.
1197
1207
.
20.
Rebba
,
R.
,
Mahadevan
,
S.
, and
Huang
,
S.
,
2006
, “
Validation and Error Estimation of Computational Models
,”
Reliab. Eng. Syst. Saf.
,
91
(
10
) pp.
1390
1397
.
21.
Ferson
,
S.
,
Oberkampf
,
W.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.
22.
Ferson
,
S.
, and
Oberkampf
,
W.
,
2009
, “
Validation of Imprecise Probability Models
,”
Int. J. Reliab. Saf.
,
3
(
1
), pp.
3
22
.
23.
Sarin
,
H.
,
Kokkolaras
,
M.
,
Hulbert
,
G.
,
Papalambros
,
P.
,
Barbat
,
S.
, and
Yang
,
R. J.
,
2010
, “
Comparing Time Histories for Validation of Simulation Models: Error Measures and Metrics
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(6), p.
0614011
.
24.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,”
21st ESV Conference
,
Stuttgart, Germany
, Paper No. 09-0407.
25.
Zhan
,
Z.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2011
, “
Enhanced Error Assessment of Response Time Histories (EEARTH) Metric and Calibration Process
,” SAE 2011 World Congress, Detroit, MI, SAE Paper No. 2011-01-0245.
26.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2008
, “
Bayesian Wavelet Method for Multivariate Model Assessment of Dynamical Systems
,”
J. Sound Vib.
,
312
(
4–5
), pp.
694
712
.
27.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2011
, “
Wavelet Spectrum Analysis Approach to Model Validation of Dynamic Systems
,”
Mech. Syst. Signal Process.
,
25
(
2
), pp.
575
590
.
28.
Zhan
,
Z.
,
Fu
,
Y.
,
Yang
,
R.-J.
, and
Peng
,
Y.
,
2011
, “
An Enhanced Bayesian Based Model Validation Method for Dynamic Systems
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041005
.
29.
Xi
,
Z.
,
Pan
,
H.
,
Fu
,
Y.
, and
Yang
,
R.
,
2015
, “
Validation Metric for Dynamic System Responses Under Uncertainty
,”
SAE Int. J. Mater. Manuf.
,
8
(
2
), pp.
309
314
.
30.
Huang
,
S. P.
,
Quek
,
S. T.
, and
Phoon
,
K. K.
,
2001
, “
Convergence Study of the Truncated Karhunen–Loeve Expansion for Simulation of Stochastic Processes
,”
Int. J. Numer. Methods Eng.
,
52
(
9
), pp.
1029
1043
.
31.
Phoon
,
K. K.
,
Huang
,
S. P.
, and
Quek
,
S. T.
,
2002
, “
Simulation of Second-Order Processes Using Karhunen–Loeve Expansion
,”
Comput. Struct.
,
80
(
12
), pp.
1049
1060
.
32.
Phoon
,
K. K.
,
Huang
,
H. W.
, and
Quek
,
S. T.
,
2005
, “
Simulation of Strongly Non-Gaussian Processes Using Karhunen–Loève Expansion
,”
Probab. Eng. Mech.
,
20
(
2
), pp.
188
198
.
You do not currently have access to this content.