The design of complex systems often requires reliability assessments involving a large number of uncertainties and low probability of failure estimations (in the order of 10−4). Estimating such rare event probabilities with crude Monte Carlo (CMC) is computationally intractable. Specific numerical methods to reduce the computational cost and the variance estimate have been developed such as importance sampling or subset simulation. However, these methods assume that the uncertainties are defined within the probability formalism. Regarding epistemic uncertainties, the interval formalism is particularly adapted when only their definition domain is known. In this paper, a method is derived to assess the reliability of a system with uncertainties described by both probability and interval frameworks. It allows one to determine the bounds of the failure probability and involves a sequential approach using subset simulation, kriging, and an optimization process. To reduce the simulation cost, a refinement strategy of the surrogate model is proposed taking into account the presence of both aleatory and epistemic uncertainties. The method is compared to existing approaches on an analytical example as well as on a launch vehicle fallout zone estimation problem.

References

References
1.
Helton
,
J. C.
,
2011
, “
Quantification of Margins and Uncertainties: Conceptual and Computational Basis
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
976
1013
.
2.
Morio
,
J.
,
2011
, “
Non-Parametric Adaptive Importance Sampling for the Probability Estimation of a Launcher Impact Position
,”
Reliab. Eng. Syst. Saf.
,
96
(
1
), pp.
178
183
.
3.
Liu
,
Y. W.
, and
Moses
,
F.
,
1994
, “
A Sequential Response Surface Method and Its Application in the Reliability Analysis of Aircraft Structural Systems
,”
Struct. Saf.
,
16
(
1
), pp.
39
46
.
4.
Kiureghian
,
A. D.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.
5.
Thunnissen
,
D. P.
,
2003
, “
Uncertainty Classification for the Design and Development of Complex Systems
,”
3rd Annual Predictive Methods Conference
, Newport Beach, CA.http://cmapspublic3.ihmc.us/rid=1MHBNWQ8R-244KMJK-16CW/Uncertainty%20Classification%20for%20the%20Design%20and%20Development%20of%20Complex%20Systems.pdf.pdf
6.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
39
71
.
7.
Guo
,
J.
, and
Du
,
X.
,
2009
, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Methods Eng.
,
78
(
13
), pp.
1585
1617
.
8.
Dempster
,
A. P.
, “
Upper and Lower Probabilities Induced by a Multivalued Mapping
,”
Ann. Math. Stat.
,
38
(
2
):
325
339
,
1967
.
9.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
, Vol.
1
,
Princeton University Press
,
Princeton, NJ
.
10.
Klir
,
G. J.
,
2005
,
Uncertainty and Information: Foundations of Generalized Information Theory
,
Wiley-Interscience
,
New York
.
11.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
SIAM, New Delhi, India.
12.
Au
,
S.-K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.
13.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.
14.
Lacaze
,
S.
, and
Missoum
,
S.
,
2014
, “
A Generalized ‘Max-Min’ Sample for Surrogate Update
,”
Struct. Multidiscip. Optim.
,
49
(
4
), pp.
683
687
.
15.
Morio
,
J.
,
Balesdent
,
M.
,
Jacquemart
,
D.
, and
Vergé
,
C.
,
2014
, “
A Survey of Rare Event Simulation Methods for Static Input–Output Models
,”
Simul. Modell. Pract. Theory
,
49
, pp.
287
304
.
16.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
1996
,
Structural Reliability Methods
, Vol.
178
.
Wiley
,
New York
.
17.
Glynn
,
P. W.
,
1996
, “
Importance Sampling for Monte Carlo Estimation of Quantiles
,”
Second International Workshop on Mathematical Methods in Stochastic Simulation and Experimental Design
, pp.
180
185
.
18.
Rubinstein
,
R. Y.
,
1997
, “
Optimization of Computer Simulation Models With Rare Events
,”
Eur. J. Oper. Res.
,
99
(
1
), pp.
89
112
.
19.
Bourinet
,
J.-M.
,
Deheeger
,
F.
, and
Lemaire
,
M.
,
2011
, “
Assessing Small Failure Probabilities by Combined Subset Simulation and Support Vector Machines
,”
Struct. Saf.
,
33
(
6
), pp.
343
353
.
20.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.
21.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
J.-M.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
673
690
.
22.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
.
23.
Hurtado
,
J. E.
,
2004
, “
An Examination of Methods for Approximating Implicit Limit State Functions From the Viewpoint of Statistical Learning theory
,”
Struct. Saf.
,
26
(
3
), pp.
271
293
.
24.
Basudhar
,
A.
,
Dribusch
,
C.
,
Lacaze
,
S.
, and
Missoum
,
S.
,
2012
, “
Constrained Efficient Global Optimization With Support Vector Machines
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
201
221
.
25.
Balesdent
,
M.
,
Morio
,
J.
, and
Marzat
,
J.
,
2013
, “
Kriging-Based Adaptive Importance Sampling Algorithms for Rare Event Estimation
,”
Struct. Saf.
,
44
, pp.
1
10
.
26.
Du
,
X.
,
2008
, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091401
.
27.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
,
2005
, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1068
1076
.
28.
Xiao
,
N.-C.
,
Huang
,
H.-Z.
,
Wang
,
Z.
,
Pang
,
Y.
, and
He
,
L.
,
2011
, “
Reliability Sensitivity Analysis for Structural Systems in Interval Probability Form
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
691
705
.
29.
Jiang
,
C.
,
Han
,
X.
,
Li
,
W. X.
,
Liu
,
J.
, and
Zhang
,
Z.
,
2012
, “
A Hybrid Reliability Approach Based on Probability and Interval for Uncertain Structures
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031001
.
30.
Dubourg
,
V.
,
2011
, “
Méta-Modèles Adaptatifs Pour L'analyse de Fiabilité et L'optimisation Sous Contrainte Fiabiliste
,” Ph.D. thesis, Université Blaise Pascal-Clermont-Ferrand II, Aubière, France.
31.
Balesdent
,
M.
,
Morio
,
J.
, and
Brevault
,
L.
,
2014
, “
Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters
,”
Methodol. Comput. Appl. Probab.
,
18
(
1
), pp.
1
20
.
32.
Limbourg
,
P.
,
Rocquigny
,
E. D.
, and
Andrianov
,
G.
,
2010
, “
Accelerated Uncertainty Propagation in Two-Level Probabilistic Studies Under Monotony
,”
Reliab. Eng. Syst. Saf.
,
95
(
9
), pp.
998
1010
.
33.
Yang
,
X.
,
Liu
,
Y.
,
Gao
,
Y.
,
Zhang
,
Y.
, and
Gao
,
Z.
,
2014
, “
An Active Learning Kriging Model for Hybrid Reliability Analysis With Both Random and Interval Variables
,”
Struct. Multidiscip. Optim.
,
51
(
5
), pp.
1
14
.
34.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
35.
Deheeger
,
F.
, and
Lemaire
,
M.
,
2007
, “
Support Vector Machine for Efficient Subset Simulations: 2SMART Method
,”
10th International Conference on Application of Statistics and Probability in Civil Engineering
, pp.
259
260
.
36.
Lacaze
,
S.
,
Brevault
,
L.
,
Missoum
,
S.
, and
Balesdent
,
M.
,
2014
, “
Probability of Failure Sensitivity With Respect to Decision Variables
,”
Struct. Multidiscip. Optim.
,
52
(
2
), pp.
375
381
.
37.
Kuo
,
K. K.
, and
Summerfield
,
M.
, eds.,
1984
,
Fundamentals of Solid-Propellant Combustion
, Vol.
90
, American Institute of Aeronautics and Astronautics, New York.
You do not currently have access to this content.