Applying previous solutions to solve new problems is a core aspect of design, and designers routinely use informal analogies to solve a wide variety of design problems. However, when the goal is to consider a large quantity and variety of creative solutions, relying on informal analogy recall may limit the analogy and solution breadth. This paper reports on work to identify the analogy connections that designers make during concept generation such that computational support can be employed to intentionally retrieve analogical solutions from existing systems. A study of the types of similarity that are commonly used to draw design analogies, and whether some types of similarity are used more frequently in compound analogy versus single analogy, was designed and implemented. The experiment consists of a design task and a follow up interview. Ten mechanical engineering graduate students specializing in design participated. Eight different types of analogical similarity are observed, and each type is equally likely to be used to form either single or compound analogies. Notably, the flow behavior was a commonly observed type of abstract similarity that helped designers notice connections across domains, suggesting the value of capturing and retrieving (computationally) flow behavior abstractions for the purpose of relating systems analogically.

References

References
1.
Ball
,
L. J.
,
Ormerod
,
T. C.
, and
Morley
,
N. J.
,
2004
, “
Spontaneous Analogising in Engineering Design: A Comparative Analysis of Experts and Novices
,”
Des. Stud.
,
25
(
5
), pp.
495
508
.
2.
Linsey
,
J.
,
Wood
,
K.
, and
Markman
,
A.
,
2008
, “
Modality and Representation in Analogy
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
85
100
.
3.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of ‘Near’ and ‘Far’: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
4.
Fu
,
K.
,
Chan
,
J.
,
Schunn
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2013
, “
Testing the Basis for an Automated Design-by-Analogy Tool Through Comparison to Expert Thinking
,”
ASME
Paper No. DETC2013-12128.
5.
Goel
,
A.
, and
Craw
,
S.
,
2005
, “
Design, Innovation and Case-Based Reasoning
,”
Knowl. Eng. Rev.
,
20
(
3
), pp.
271
276
.
6.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
,
2007
,
Engineering Design: A Systematic Approach
,
Heidelberg
,
Germany
.
7.
Ullman
,
D. G.
,
2010
,
The Mechanical Design Process
,
McGraw-Hill
,
Boston
.
8.
Otto
,
K.
, and
Wood
,
K.
,
2001
,
Product Design: Techniques in Reverse Engineering, Systematic Design, and New Product Development
,
Prentice-Hall
,
New York
.
9.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2004
,
Product Design and Development
,
McGraw-Hill/Irwin
,
Boston
.
10.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
11.
Ahmed
,
S.
, and
Wallace
,
K.
,
2003
, “
Evaluating a Functional Basis
,”
ASME Paper No. DETC
2003
/DTM-48685.
12.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Arnold
,
C. B.
,
Stone
,
R. B.
, and
Mcadams
,
D. A.
,
2009
, “
A Component Taxonomy as a Framework for Computational Design Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
1
), p.
011007
.
13.
Casakin
,
H.
, and
Goldschmidt
,
G.
,
1999
, “
Expertise and the Use of Visual Analogy: Implications for Design Education
,”
Des. Stud.
,
20
(
2
), pp.
153
175
.
14.
Christensen
,
B. T.
, and
Schunn
,
C. D.
,
2007
, “
The Relationship of Analogical Distance to Analogical Function and Pre-Inventive Structure: The Case of Engineering Design
,”
Mem. Cognit.
,
35
(
1
), pp.
29
38
.
15.
Eckert
,
C. M.
,
Stacey
,
M.
, and
Earl
,
C.
,
2005
, “
References to Past Designs
,” Studying Designers'05,
J. S.
Gero
and
N.
Bonnardel
, eds., Aix-en-Provence, France, Oct. 17–18, Key Centre of Design Computing and Cognition, Sydney, Australia, pp.
3
21
.
16.
Leclercq
,
P.
, and
Heylighen
,
A.
,
2002
, “
5,8 Analogies per Hour
,” Artificial Intelligence in Design’02, J. S. Gero, ed., Springer Science+Business Media, Dordrecht, The Netherlands, pp.
285
303
.
17.
Gick
,
M. L.
, and
Holyoak
,
K. J.
,
1980
, “
Analogical Problem Solving
,”
Cognit. Psychol.
,
12
(
3
), pp.
306
355
.
18.
Kolodner
,
J. L.
,
1997
, “
Educational Implications of Analogy: A View From Case-Based Reasoning
,”
Am. Psychol.
,
52
(
1
), pp.
57
66
.
19.
Gordon
,
W. J.
,
1961
,
Synectics: The Development of Creative Capacity
,
Harper & Row
,
New York
.
20.
Cross
,
N.
,
2008
,
Engineering Design Methods: Strategies for Product Design
,
Wiley
,
Hoboken, NJ
.
21.
Falkenhainer
,
B.
,
Forbus
,
K. D.
, and
Gentner
,
D.
,
1989
, “
The Structure-Mapping Engine: Algorithm and Examples
,”
Artif. Intell.
,
41
(
1
), pp.
1
63
.
22.
Gentner
,
D.
,
1983
, “
Structure-Mapping: A Theoretical Framework for Analogy
,”
Cognit. Sci.
,
7
(
2
), pp.
155
170
.
23.
Clement
,
J.
,
1988
, “
Observed Methods for Generating Analogies in Scientific Problem Solving
,”
Cognit. Sci.
,
12
(
4
), pp.
563
586
.
24.
Clement
,
J.
,
2008
,
Creative Model Construction in Scientists and Students: The Role of Imagery, Analogy, and Mental Stimulation
,
Springer
,
Dordrecht, The Netherlands
.
25.
Goel
,
A.
, and
Bhatta
,
S.
,
2004
, “
Design Patterns: An Unit of Analogical Transfer in Creative Design
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
85
94
.
26.
Goel
,
A.
,
1997
, “
Design, Analogy and Creativity
,”
IEEE Expert Intell. Syst. Their Appl.
,
12
(
3
), pp.
62
70
.
27.
Maher
,
M.
,
Balachandran
,
M.
, and
Zhang
,
D. M.
,
1995
,
Case-Based Reasoning in Design
,
Lawrence Erlbaum Associates
,
Hillsdale, NJ
.
28.
Gick
,
M.
, and
Holyoak
,
K. J.
,
1983
, “
Schema Induction and Analogical Transfer
,”
Cognit. Psychol.
,
15
(
1
), pp.
1
38
.
29.
Bhatta
,
S.
, and
Goel
,
A.
,
1997
, “
Learning Generic Mechanisms for Innovative Design Adaptation
,”
J. Learn. Sci.
,
6
(
4
), pp.
367
396
.
30.
Griffith
,
T. W.
,
Nersessian
,
N. J.
, and
Goel
,
A.
,
1996
, “
The Role of Generic Models in Conceptual Change
,”
18th Annual Conference of the Cognitive Science Society
, San Diego, CA, July 12–15, pp.
312
317
.
31.
Griffith
,
T.
,
Nersessian
,
N.
, and
Goel
,
A.
,
2000
, “
Function-Follows-Form: Generative Modeling in Scientific Reasoning
,”
22nd Cognitive Science Conference
, Philadelphia, PA, Aug. 13–15, pp.
196
201
.
32.
Nersessian
,
N.
,
2008
,
Creating Scientific Concepts
,
MIT Press
,
Cambridge, MA
.
33.
Vattam
,
S. S.
,
Helms
,
M. E.
, and
Goel
,
A. K.
,
2008
, “
Compound Analogical Design: Interaction Between Problem Decomposition and Analogical Transfer in Biologically Inspired Design
,”
Design Computing and Cognition’08: Proceedings of the Third International Conference on Design Computing and Cognition
, Atlanta, GA, June 21–25,
Springer
,
Heidelberg, Germany
, pp.
377
396
.
34.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2002
, “
The Situated Function–Behaviour–Structure Framework
,” Artificial Intelligence in Design’02, J. S. Gero, ed., Springer Science+Business Media, Dordrecht, The Netherlands, pp.
89
104
.
35.
Dinar
,
M.
,
Shah
,
J.
,
Langley
,
P.
,
Hunt
,
G.
, and
Campana
,
E.
,
2011
, “
A Structure for Representing Problem Formulation in Design
,”
18th International Conference on Engineering Design (ICED11)
, S. Culley, B. Hicks, T. McAloone, T. Howard, and W. Chen, eds., Lyngby/Copenhagen, Denmark, Aug. 15–19, pp.
392
401
.
36.
Danielescu
,
A.
,
Dinar
,
M.
,
MacLellan
,
C.
,
Shah
,
J. J.
, and
Langley
,
P.
,
2012
, “
The Structure of Creative Design: What Problem Maps Can Tell Us About Problem Formulation and Creative Designers
,”
ASME
Paper No. DETC2012-70325.
37.
Sen
,
C.
,
2011
, “
A Formal Representation of Mechanical Functions to Support Physics-Based Computational Reasoning in Early Mechanical Design
,” Ph.D. thesis, Clemson University, Clemson, SC.
38.
Kadar-Cabelli
,
S.
,
1985
, “
Purpose-Directed Analogy
,”
7th Annual Conference of Cognitive Science Society
, Irvine, CA, Aug. 15–17,
Lawrence Erlbaum Publishers
,
Mahwah, NJ
, pp.
150
159
.
39.
Helms
,
M.
, and
Goel
,
A. K.
,
2014
, “
The Four-Box Method of Problem Specification and Analogy Evaluation in Biologically Inspired Design
,”
ASME
Paper No. DETC2014-35672.
40.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
113
132
.
41.
Linsey
,
J.
,
Markman
,
A.
, and
Wood
,
K.
,
2008
, “
WordTrees: A Method for Design-by-Analogy
,”
American Society for Engineering Education Annual Conference
, ASEE, Pittsburgh, PA, June 22–25, Paper No. AC 2008-1669.
42.
Lucero
,
B. M.
,
2007
, “
Design-Analogy Performance Parameter System (D-APPS)
,” Ph.D. thesis, Colorado School of Mines, Golden, CO.
43.
Summers
,
J.
,
Maxwell
,
D.
,
Camp
,
C.
, and
Butler
,
A.
,
2000
, “
Features as an Abstraction for Designer Convenience in the Design of Complex Products
,”
ASME
Paper No. DETC00/CIE14642.
44.
Regli
,
W. C.
, and
Cicirello
,
V. A.
,
2000
, “
Managing Digital Libraries for Computer-Aided Design
,”
Comput.-Aided Des.
,
32
(
2
), pp.
119
132
.
45.
Bohm
,
M.
,
Stone
,
R.
, and
Szykman
,
S.
,
2005
, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
4
), pp.
360
372
.
46.
Bryant
,
C. R.
,
McAdams
,
D. A.
,
Stone
,
R. B.
,
Kurtoglu
,
T.
, and
Campbell
,
M.
,
2006
, “
A Validation Study of an Automated Concept Generator Design Tool
,”
ASME
Paper No. DETC2006-99489.
47.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2008
, “
Using a Design Repository to Drive Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
014502
.
48.
Shooter
,
S.
,
Simpson
,
T.
,
Kumara
,
S.
,
Stone
,
R.
, and
Terpenny
,
J.
,
2005
, “
Toward a Multi-Agent Information Management Infrastructure for Product Family Planning and Mass Customisation
,”
Int. J. Mass Customisation
,
1
(
1
), pp.
134
155
.
49.
Bohm
,
M.
,
Stone
,
R.
,
Simpson
,
T.
, and
Steva
,
E.
,
2008
, “
Introduction of a Data Schema: To Support a Design Repository
,”
Comput.-Aided Des.
,
40
(
7
), pp.
801
811
.
50.
Bohm
,
M. R.
,
Stone
,
R. B.
,
Simpson
,
T. W.
, and
Steva
,
E. D.
,
2006
, “
Introduction of a Data Schema: The Inner Workings of a Design Repository
,”
ASME
Paper No. DETC2006-99518.
51.
Ullman
,
D. G.
,
Dietterich
,
T. G.
, and
Stauffer
,
L. A.
,
1988
, “
A Model of the Mechanical Design Process Based on Empirical Data
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
2
(
1
), pp.
33
52
.
52.
Baya
,
V.
,
1996
, “
Information Handling Behaviour of Designers During Conceptual Design: Three Experiments
,” Ph.D. thesis, Stanford University, Stanford, CA.
53.
Sonalkar
,
N.
,
Mabogunje
,
A.
, and
Leifer
,
L.
,
2013
, “
Developing a Visual Representation to Characterize Moment-to-Moment Concept Generation in Design Teams
,”
Int. J. Des. Creativity Innovation
,
1
(
2
), pp.
93
108
.
54.
Cagan
,
J.
,
Dinar
,
M.
,
Shah
,
J. J.
,
Leifer
,
L.
,
Linsey
,
J.
,
Smith
,
S.
, and
Vargas-Hernandez
,
N.
,
2013
, “
Empirical Studies of Design Thinking: Past, Present, Future
,”
ASME
Paper No. DETC2013-13302.
55.
Glaser
,
B. G.
, and
Strauss
,
A. L.
,
2009
,
The Discovery of Grounded Theory: Strategies for Qualitative Research
,
Transaction Publishers
,
Piscataway, NJ
.
56.
Ericsson
,
K. A.
,
2006
, “
Protocol Analysis and Expert Thought: Concurrent Verbalizations of Thinking During Experts' Performance on Representative Tasks
,”
The Cambridge Handbook of Expertise and Expert Performance
,
Cambridge University Press
,
Cambridge, UK
, pp.
223
242
.
57.
Aurisicchio
,
M.
,
Bracewell
,
R. H.
, and
Wallace
,
K. M.
,
2006
, “
Characterising in Detail the Information Requests of Engineering Designers
,”
ASME
Paper No. DETC2006-99418.
58.
Cohen
,
J.
,
1960
, “
A Coefficient of Agreement for Nominal Scales
,”
Educ. Psychol. Meas.
,
20
(
1
), pp.
37
46
.
59.
Landis
,
J. R.
, and
Koch
,
G. G.
,
1977
, “
The Measurement of Observer Agreement for Categorical Data
,”
Biometrics
,
33
(
1
), pp.
159
174
.
60.
Cardillo
,
G.
,
2010
, “
MyFisher: The Definitive Function for the Fisher's Exact and Conditional Test for Any R × C Matrix
,” The MathWorks, Inc., Natick, MA.
61.
Helms
,
M. E.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.
You do not currently have access to this content.