When most designers set out to develop a new product, they solicit feedback from potential consumers. These data are incorporated into the design process in an effort to more effectively meet customer requirements. Often these data are used to construct a model of consumer preference capable of evaluating candidate designs. Although the mechanics of these models have been extensively studied, there are still some open questions, particularly with respect to models of aesthetic preference. When constructing preference models, simplistic product representations are often favored over high fidelity product models in order to save time and expense. This work investigates how choice of product representation can affect model performance in visual conjoint analysis. Preference models for a single product, a table knife, are derived using three different representation schemes: simple sketches, solid models, and three dimensional (3D)-printed models. Each of these representations is used in a separate conjoint analysis survey. The results from this study show that the choice model based on 3D-printed photopolymer prototypes underperformed. Additionally, consumer responses were inconsistent and potentially contradictory between different representations. Consequently, when using conjoint analysis for product innovation, obtaining a true understanding of consumer preference requires selecting representations based on how accurately they convey the product details in question.

References

References
1.
Mugge
,
R.
, and
Dahl
,
D. W.
,
2013
, “
Seeking the Ideal Level of Design Newness: Consumer Response to Radical and Incremental Product Design
,”
J. Prod. Innovation Manage.
,
30
(
S1
), pp.
34
47
.
2.
Green
,
P. E.
, and
Rao
,
V. R.
,
1971
, “
Conjoint Measurement for Quantifying Judgmental Data
,”
J. Mark. Res.
,
8
(
3
), pp.
355
363
.
3.
Huber
,
J.
, and
Zwerina
,
K.
,
1996
, “
The Importance of Utility Balance in Efficient Choice Designs
,”
J. Mark. Res.
,
33
(
3
), pp.
307
317
.
4.
Dahan
,
E.
, and
Hauser
,
J.
,
2002
, “
The Virtual Customer
,”
J. Prod. Innovation Manage.
,
19
(
5
), pp.
332
353
.
5.
Kim
,
S.-H.
, and
Srinivasan
,
V.
,
2009
, “
A Conjoint-Hazard Model of the Timing of Buyers' Upgrading to Improved Versions of High-Technology Products
,”
J. Prod. Innovation Manage.
,
26
(
3
), pp.
278
290
.
6.
Pullman
,
M. E.
,
Moore
,
W. L.
, and
Wardell
,
D. G.
,
2002
, “
A Comparison of Quality Function Deployment and Conjoint Analysis in New Product Design
,”
J. Prod. Innovation Manage.
,
19
(
5
), pp.
354
364
.
7.
Green
,
P. E.
,
Krieger
,
A. M.
, and
Wind
,
Y. J.
,
2001
, “
Thirty Years of Conjoint Analysis: Reflections and Prospects
,”
Interfaces
,
33
(
3
), pp.
S56
S73
.
8.
Luo
,
L.
,
Kannan
,
P. K.
,
Besharati
,
B.
, and
Azarm
,
S.
,
2005
, “
Design of Robust New Products Under Variability: Marketing Meets Design
,”
J. Prod. Innovation Manage.
,
22
(
2
), pp.
177
192
.
9.
Besharati
,
B.
,
Luo
,
L.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2006
, “
Multi-Objective Single Product Robust Optimization: An Integrated Design and Marketing Approach
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
884
892
.
10.
Olewnik
,
A.
, and
Lewis
,
K.
,
2006
, “
A Decision Support Framework for Flexible System Design
,”
J. Eng. Des.
,
17
(
1
), pp.
75
97
.
11.
Green
,
P. E.
, and
Srinivasan
,
V.
,
1978
, “
Conjoint Analysis in Consumer Research: Issues and Outlook
,”
J. Consum. Res.
,
5
(
2
), pp.
103
123
.
12.
Silayoi
,
P.
, and
Speece
,
M.
,
2007
, “
The Importance of Packaging Attributes: A Conjoint Analysis Approach
,”
Eur. J. Mark.
,
41
(
11/12
), pp.
1495
1517
.
13.
Ryan
,
M.
, and
Farrar
,
S.
,
2000
, “
Using Conjoint Analysis to Elicit Preferences for Health Care
,”
Br. Med. J.
,
320
(
7248
), pp.
1530
1533
.
14.
Ryan
,
M.
,
Scott
,
D. A.
,
Reeves
,
C.
,
Bate
,
A.
,
Van Teijlingen
,
E.
,
Russell
,
E. M.
,
Napper
,
M.
, and
Robb
,
C. M.
,
2001
, “
Eliciting Public Preferences for Healthcare: A Systematic Review of Techniques
,”
Health Technol. Assess. Winchester Engl.
,
5
(
5
), pp.
1
186
.
15.
Eckman
,
M.
, and
Wagner
,
J.
,
1994
, “
Judging The Attractiveness of Product Design: The Effect of Visual Attributes and Consumer Characteristics
,”
Adv. Consum. Res.
,
21
, pp.
560
564
.
16.
Jaeger
,
S. R.
,
Hedderley
,
D.
, and
MacFie
,
H. J. H.
,
2001
, “
Methodological Issues in Conjoint Analysis: A Case Study
,”
Eur. J. Mark.
,
35
(
11/12
), pp.
1217
1239
.
17.
Page
,
A. L.
, and
Rosenbaum
,
H. F.
,
1987
, “
Redesigning Product Lines With Conjoint Analysis: How Sunbeam Does It
,”
J. Prod. Innovation Manage.
,
4
(
2
), pp.
120
137
.
18.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2005
, “
Linking Marketing and Engineering Product Design Decisions Via Analytical Target Cascading*
,”
J. Prod. Innovation Manage.
,
22
(
1
), pp.
42
62
.
19.
Michalek
,
J. J.
,
Ebbes
,
P.
,
Adigüzel
,
F.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2011
, “
Enhancing Marketing With Engineering: Optimal Product Line Design for Heterogeneous Markets
,”
Int. J. Res. Mark.
,
28
(
1
), pp.
1
12
.
20.
Moore
,
W. L.
,
Louviere
,
J. J.
, and
Verma
,
R.
,
1999
, “
Using Conjoint Analysis to Help Design Product Platforms
,”
J. Prod. Innovation Manage.
,
16
(
1
), pp.
27
39
.
21.
Tseng
,
M. M.
, and
Du
,
X.
,
1998
, “
Design by Customers for Mass Customization Products
,”
CIRP Ann. Manuf. Technol.
,
47
(
1
), pp.
103
106
.
22.
Williams
,
N.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2008
, “
Engineering Product Design Optimization for Retail Channel Acceptance
,”
ASME J. Mech. Des.
,
130
(
6
), p.
061402
.
23.
MacDonald
,
E.
,
Lubensky
,
A.
,
Sohns
,
B.
, and
Papalambros
,
P. Y.
,
2009
, “
Product Semantics and Wine Portfolio Optimisation
,”
Int. J. Prod. Dev.
,
7
(
1
), pp.
73
98
.
24.
Ferguson
,
S.
,
Olewnik
,
A.
, and
Cormier
,
P.
,
2011
, “
Exploring Marketing to Engineering Information Mapping in Mass Customization: A Presentation of Ideas, Challenges and Resulting Questions
,”
ASME
Paper No. DETC2011-48742.
25.
Grissom
,
M. D.
,
Belegundu
,
A. D.
,
Rangaswamy
,
A.
, and
Koopmann
,
G. H.
,
2005
, “
Conjoint-Analysis-Based Multiattribute Optimization: Application in Acoustical Design
,”
Struct. Multidiscip. Optim.
,
31
(
1
), pp.
8
16
.
26.
Kohli
,
R.
, and
Sukumar
,
R.
,
1990
, “
Heuristics for Product-Line Design Using Conjoint Analysis
,”
Manage. Sci.
,
36
(
12
), pp.
1464
1478
.
27.
Krishnan
,
V.
, and
Ulrich
,
K. T.
,
2001
, “
Product Development Decisions: A Review of the Literature
,”
Manage. Sci.
,
47
(
1
), pp.
1
21
.
28.
Schumann
,
J.
,
Strothotte
,
T.
,
Laser
,
S.
, and
Raab
,
A.
,
1996
, “
Assessing the Effect of Non-Photorealistic Rendered Images in CAD
,”
SIGCHI Conference on Human Factors in Computing Systems Common Ground CHI 96
, ACM, pp.
35
41
.
29.
Wong
,
Y. Y.
,
1992
, “
Rough and Ready Prototypes: Lessons from Graphic Design
,” SIGCHI Bulletin, ACM, pp.
83
84
.
30.
Dahan
,
E.
, and
Srinivasan
,
V.
,
2000
, “
The Predictive Power of Internet-Based Product Concept Testing Using Visual Depiction and Animation
,”
J. Prod. Innovation Manage.
,
17
(
2
), pp.
99
109
.
31.
Tseng
,
M. M.
,
Jiao
,
J.
, and
Su
,
C.-J.
,
1998
, “
Virtual Prototyping for Customized Product Development
,”
Integr. Manuf. Syst.
,
9
(
6
), pp.
334
343
.
32.
Urban
,
G. L.
,
Weinberg
,
B. D.
, and
Hauser
,
J. R.
,
1996
, “
Premarket Forecasting of Really-New Products
,”
J. Mark.
,
60
(
1
), pp.
47
60
.
33.
Macomber
,
B.
, and
Yang
,
M.
,
2011
, “
The Role of Sketch Finish and Style in User Responses to Early Stage Design Concepts
,”
ASME
Paper No. DETC2011-48714.
34.
Kudrowitz
,
B. M.
, and
Wallace
,
D.
,
2013
, “
Assessing the Quality of Ideas From Prolific, Early-Stage Product Ideation
,”
J. Eng. Des.
,
24
(
2
), pp.
120
139
.
35.
Dhillon
,
B.
,
Banach
,
P.
,
Kocielnik
,
R.
,
Emparanza
,
J. P.
,
Politis
,
I.
,
Raczewska
,
A.
, and
Markopoulos
,
P.
,
2011
, “
Visual Fidelity of Video Prototypes and User Feedback: A Case Study
,”
25th BCS Conference on Human-Computer Interaction
, pp.
139
144
.
36.
Sauer
,
J.
,
Seibel
,
K.
, and
Rüttinger
,
B.
,
2010
, “
The Influence of User Expertise and Prototype Fidelity in Usability Tests
,”
Appl. Ergon.
,
41
(
1
), pp.
130
140
.
37.
Sauer
,
J.
, and
Sonderegger
,
A.
,
2009
, “
The Influence of Prototype Fidelity and Aaesthetics of Design in Usability Tests: Effects on User Behaviour, Subjective Evaluation and Emotion
,”
Appl. Ergon.
,
40
(
4
), pp.
670
677
.
38.
Huber
,
J.
, and
Holbrook
,
M. B.
,
1981
, “
The Use of Real Versus Artificial Stimuli in Research on Visual Esthetic Judgments
,”
SV—Symbolic Consumer Behavior
,
E. C.
Hirschman
and
M. B.
Holbrook
, eds.,
Association for Consumer Research
,
New York
, pp.
60
68
.
39.
Reich
,
Y.
,
1993
, “
A Model of Aaesthetic Judgment in Design
,”
Artif. Intell. Eng.
,
8
(
2
), pp.
141
153
.
40.
Bloch
,
P. H.
,
1995
, “
Seeking the Ideal Form: Product Design and Consumer Response
,”
J. Mark.
,
59
(
3
), pp.
16
29
.
41.
Hoegg
,
J.
, and
Alba
,
J. W.
,
2011
, “
Seeing Is Believing (Too Much): The Influence of Product Form on Perceptions of Functional Performance
,”
J. Prod. Innovation Manage.
,
28
(
3
), pp.
346
359
.
42.
Venkatesh
,
A.
, and
Meamber
,
L.
,
2008
, “
The Aaesthetics of Consumption and the Consumer as an Aaesthetic Subject
,”
Consum. Mark. Cult.
,
11
(
1
), pp.
45
70
.
43.
Creusen
,
M. E. H.
, and
Schoormans
,
J. P. L.
,
2005
, “
The Different Roles of Product Appearance in Consumer Choice
,”
J. Prod. Innovation Manage.
,
22
(
1
), pp.
63
81
.
44.
Creusen
,
M. E. H.
,
Veryzer
,
R. W.
, and
Schoormans
,
J. P. L.
,
2010
, “
Product Value Importance and Consumer Preference for Visual Complexity and Symmetry
,”
Eur. J. Mark.
,
49
(
9/10
), pp.
1437
1452
.
45.
Crilly
,
N.
,
Moultrie
,
J.
, and
Clarkson
,
P.
,
2004
, “
Seeing Things: Consumer Response to the Visual Domain in Product Design
,”
Des. Stud.
,
25
(
6
), pp.
547
577
.
46.
Luchs
,
M. G.
,
Brower
,
J.
, and
Chitturi
,
R.
,
2012
, “
Product Choice and the Importance of Aaesthetic Design Given the Emotion-Laden Trade-Off Between Sustainability and Functional Performance
,”
J. Prod. Innovation Manage.
,
29
(
6
), pp.
903
916
.
47.
Swamy
,
S.
,
Orsborn
,
S.
,
Michalek
,
J.
, and
Cagan
,
J.
,
2007
, “
Measurement of Headlight Form Preference Using Choice-Based Conjoint Analysis
,”
ASME
Paper No. DETC2007-35409.
48.
Petiot
,
J.-F.
, and
Dagher
,
A.
,
2010
, “
Preference-Oriented Form Design: Application to Cars' Headlights
,”
Int. J. Interact. Des. Manuf.
,
5
(
1
), pp.
17
27
.
49.
Reid
,
T. N.
,
Gonzalez
,
R. D.
, and
Papalambros
,
P. Y.
,
2010
, “
Quantification of Perceived Environmental Friendliness for Vehicle Silhouette Design
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101010
.
50.
Kelly
,
J. C.
,
Maheut
,
P.
,
Petiot
,
J.-F.
, and
Papalambros
,
P. Y.
,
2011
, “
Incorporating User Shape Preference in Engineering Design Optimisation
,”
J. Eng. Des.
,
22
(
9
), pp.
627
650
.
51.
Tseng
,
I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2012
, “
Concurrent Optimization of Computationally Learned Stylistic Form and Functional Goals
,”
ASME J. Mech. Des.
,
134
(
11
), p.
111006
.
52.
Turner
,
H.
,
Orsborn
,
S.
, and
Lough
,
K. G.
,
2009
, “
Quantifying Product Color Preference in a Utility Function
,” Masters thesis, American Society of Engineering Management, Springfield, MO.
53.
Sylcott
,
B.
,
Cagan
,
J.
, and
Tabibnia
,
G.
,
2013
, “
Understanding Consumer Tradeoffs Between Form and Function Through Metaconjoint and Cognitive Neuroscience Analyses
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101002
.
54.
Intille
,
S.
,
Kukla
,
C.
, and
Ma
,
X.
,
2002
, “
Eliciting User Preferences Using Image-Based Experience Sampling and Reflection
,” CHI02 Extended Abstracts on Human Factors in Computer Systems,
ACM Press
,
Minneapolis, MN
, pp.
738
739
.
55.
Dijkstra
,
J.
, and
Timmermans
,
H. J. P.
,
1998
, “
Conjoint Analysis and Virtual Reality—A Review
,”
4th Design and Decision Support Systems in Architecture and Urban Planning Conference
, Maastricht, The Netherlands, July 26–29.
56.
Tovares
,
N.
,
Boatwright
,
P.
, and
Cagan
,
J.
,
2014
, “
Experiential Conjoint Analysis: An Experience-Based Method for Eliciting, Capturing, and Modeling Consumer Preference
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101404
.
57.
Dominique-Ferreira
,
S.
,
Boubeta
,
A. R.
, and
Mallou
,
J. V.
,
2012
, “
Minimizing the Risks of Innovation in Bottled Water Design: An Application of Conjoint Analysis and Focus Group
,”
Afr. J. Bus. Manage.
,
6
(
31
), pp.
9096
9104
.
58.
Jansen
,
S.
,
Boumeester
,
H.
,
Coolen
,
H.
,
Goetgeluk
,
R.
, and
Molin
,
E.
,
2009
, “
The Impact of Including Images in a Conjoint Measurement Task: Evidence From Two Small-Scale Studies
,”
J. Hous. Built Environ.
,
24
(
3
), pp.
271
297
.
59.
Vriens
,
M.
,
Loosschilder
,
G. H.
,
Rosbergen
,
E.
, and
Wittink
,
D. R.
,
1998
, “
Verbal Versus Realistic Pictorial Representations in Conjoint Analysis With Design Attributes
,”
J. Prod. Innovation Manage.
,
15
(
5
), pp.
455
467
.
60.
Reid
,
T. N.
,
2013
, “
Impact of Product Design Representation on Customer Judgment
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091008
.
61.
Sahin
,
A.
,
Boe
,
M.
,
Terpenny
,
J.
, and
Bohn
,
J. H.
,
2007
, “
A Study to Understand Perceptual Discrepancies Using Visual Illusions and Data Envelopment Analysis (DEA)
,”
ASME J. Mech. Des.
,
129
(
7
), pp.
744
752
.
62.
Gensch
,
D.
, and
Recker
,
W.
,
1979
, “
The Multinomial, Multiattribute Logit Choice Model
,”
J. Mark. Res.
,
16
(
1
), pp.
124
132
.
63.
Train
,
K. E.
,
2003
,
Discrete Choice Methods With Simulation
,
Cambridge University Press
,
New York
.
64.
Louviere
,
J.
, and
Woodworth
,
G.
,
1983
, “
Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data
,”
J. Mark. Res.
,
20
(
4
), pp.
350
367
.
65.
Orme
,
B. K.
,
Alpert
,
M. I.
, and
Christensen
,
E.
,
1997
, “
Assessing the Validity of Conjoint Analysis-Continued
,”
Sawtooth Software Conference Proceedings
, Sequim, WA, pp. 209–226.
66.
Hyndman
,
R. J.
, and
Koehler
,
A. B.
,
2006
, “
Another Look at Measures of Forecast Accuracy
,”
Int. J. Forecasting
,
22
(
4
), pp.
679
688
.
67.
Sylcott
,
B.
,
Michalek
,
J. J.
, and
Cagan
,
J.
,
2015
, “
Towards Understanding the Role of Interaction Effects in Visual Conjoint Analysis
,”
ASME J. Mech. Des.
,
137
(
9
), p.
094503
.
68.
Hagerty
,
M.
,
1986
, “
The Cost of Simplifying Preference Models
,”
Mark. Sci.
,
5
(
4
), pp.
298
319
.
69.
Hauser
,
J. R.
, and
Rao
,
V. R.
,
2004
, “
Conjoint Analysis, Related Modeling, and Applications
,”
Marketing Research and Modeling: Progress and Prospects
,
Springer
,
New York
, pp.
141
168
.
You do not currently have access to this content.