Design grammars have been successfully applied in numerous engineering disciplines, e.g., in electrical engineering, architecture, and mechanical engineering. A successful application of design grammars in computational design synthesis (CDS) requires (a) meaningful representation of designs and the design task at hand, (b) careful formulation of grammar rules to synthesize new designs, (c) problem-specific design evaluation, and (d) selection of an appropriate algorithm to guide the synthesis process. Determining these different components of a CDS method requires not only a detailed understanding of each individual part but also of the interdependencies between them. In this paper, a new method is presented to support both CDS method development and application. The method analyzes the designs generated during the synthesis process and visualizes how the design space is explored with respect to design characteristics and objectives. The search algorithm as well as the grammar rules are analyzed with this approach. Two case studies, the synthesis of gearboxes and of bicycle frames, demonstrate how the method can be used to analyze the different components of CDS methods. The presented research can analyze the interplay between grammar rules and the search process during method development.

References

References
1.
Cagan
,
J.
,
Campbell
,
M. I.
,
Finger
,
S.
, and
Tomiyama
,
T.
,
2005
, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
171
181
.
2.
Karavirta
,
V.
,
Korhonen
,
A.
,
Malmi
,
L.
, and
Naps
,
T.
,
2010
, “
A Comprehensive Taxonomy of Algorithm Animation Languages
,”
J. Visual Languages Comput.
,
21
(
1
), pp.
1
22
.
3.
Hundhausen
,
C. D.
,
Douglas
,
S. A.
, and
Stasko
,
J. T.
,
2002
, “
A Meta-Study of Algorithm Visualization Effectiveness
,”
J. Visual Languages Comput.
,
13
(
3
), pp.
259
290
.
4.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
5.
Helms
,
B.
, and
Shea
,
K.
,
2012
, “
Computational Synthesis of Product Architectures Based on Object-Oriented Graph Grammars
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021008
.
6.
McKay
,
A.
,
Chase
,
S.
,
Shea
,
K.
, and
Chau
,
H. H.
,
2012
, “
Spatial Grammar Implementation: From Theory to Useable Software
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
26
(
2
), pp.
143
159
.
7.
Königseder
,
C.
, and
Shea
,
K.
,
2014
, “
Systematic Rule Analysis of Generative Design Grammars
,”
AI EDAM
,
28
(
3
), pp.
227
238
.
8.
Königseder
,
C.
,
Stanković
,
T.
, and
Shea
,
K.
,
2015
, “
Improving Generative Grammar Development and Application Through Network Analysis Techniques
,”
International Conference on Engineering Design (ICED)
,
Milano
,
Italy
, pp.
167
176
.
9.
Knowlton
,
K.
,
1966
, “
Bell Telephone Laboratories Low-Level Linked List Language (16-Minute Black and White Film)
,” Bell Laboratories, Murray Hill, NJ.
10.
Baecker
,
R.
,
1981
, “
Sorting Out Sorting (30 Minutes)
,” Media Centre Production, University of Toronto, Toronto, ON, Canada.
11.
Brown
,
M. H.
, and
Sedgewick
,
R.
,
1985
, “
Techniques for Algorithm Animation
,”
IEEE Software
,
2
(
1
), pp.
28
39
.
12.
Price
,
B. A.
,
Baecker
,
R. M.
, and
Small
,
I. S.
,
1993
, “
A Principled Taxonomy of Software Visualization
,”
J. Visual Languages Comput.
,
4
(
3
), pp.
211
266
.
13.
Kerren
,
A.
, and
Stasko
,
J. T.
,
2002
, “
Algorithm Animation
,”
Software Visualization
,
Springer
,
Berlin, Germany
, pp.
1
15
.
14.
Messac
,
A.
, and
Chen
,
X.
,
2000
, “
Visualizing the Optimization Process in Real-Time Using Physical Programming
,”
Eng. Optim.
,
32
(
6
), pp.
721
747
.
15.
Diehl
,
S.
,
2007
,
Software Visualization: Visualizing the Structure, Behaviour, and Evolution of Software
,
Springer
,
Berlin, Germany
.
16.
Tovares
,
N.
,
Boatwright
,
P.
, and
Cagan
,
J.
,
2014
, “
Experiential Conjoint Analysis: An Experience-Based Method for Eliciting, Capturing, and Modeling Consumer Preference
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101404
.
17.
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2011
, “
A Design Preference Elicitation Query as an Optimization Process
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111004
.
18.
Wyatt
,
D. F.
,
Wynn
,
D. C.
, and
Clarkson
,
P. J.
,
2013
, “
A Scheme for Numerical Representation of Graph Structures in Engineering Design
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011010
.
19.
Stump
,
G. M.
,
Yukish
,
M.
,
Simpson
,
T. W.
, and
Harris
,
E. N.
,
2003
, “
Design Space Visualization and Its Application to a Design by Shopping Paradigm
,”
ASME
Paper No. DETC2003/DAC-48785.
20.
Behdad
,
S.
,
Berg
,
L. P.
,
Thurston
,
D.
, and
Vance
,
J.
,
2014
, “
Leveraging Virtual Reality Experiences With Mixed-Integer Nonlinear Programming Visualization of Disassembly Sequence Planning Under Uncertainty
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041005
.
21.
Keller
,
R.
,
Flanagan
,
T. L.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
,
2006
, “
Two Sides of the Story: Visualising Products and Processes in Engineering Design
,”
Tenth International Conference on Information Visualization IV 2006
, pp.
362
367
.
22.
Bernstein
,
W. Z.
,
Ramanujan
,
D.
,
Kulkarni
,
D. M.
,
Tew
,
J.
,
Elmqvist
,
N.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2015
, “
Mutually Coordinated Visualization of Product and Supply Chain Metadata for Sustainable Design
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121101
.
23.
Suppapitnarm
,
A.
,
Seffen
,
K.
,
Parks
,
G.
,
Connor
,
A.
, and
Clarkson
,
P.
,
1999
, “
Multiobjective Optimisation of Bicycle Frames Using Simulated Annealing
,”
Conference on Engineering Design Optimization
, Ilkley, UK, pp.
357
364
.
24.
Campbell
,
M. I.
,
Rai
,
R.
, and
Kurtoglu
,
T.
,
2012
, “
A Stochastic Tree-Search Algorithm for Generative Grammars
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
3
), p.
031006
.
25.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
26.
Chase
,
S. C.
,
2002
, “
A Model for User Interaction in Grammar-Based Design Systems
,”
Autom. Constr.
,
11
(
2
), pp.
161
172
.
27.
Geiß
,
R.
,
Batz
,
G.
,
Grund
,
D.
,
Hack
,
S.
, and
Szalkowski
,
A.
,
2006
, “
GrGen: A Fast SPO-Based Graph Rewriting Tool
,”
Graph Transformations
,
A.
Corradini
,
H.
Ehrig
,
U.
Montanari
,
L.
Ribeiro
, and
G.
Rozenberg
, eds.,
Springer
,
Berlin, Germany
, pp.
383
397
.
28.
Cash
,
P.
,
Stanković
,
T.
, and
Štorga
,
M.
,
2014
, “
Using Visual Information Analysis to Explore Complex Patterns in the Activity of Designers
,”
Des. Stud.
,
35
(
1
), pp.
1
28
.
29.
Barnes
,
J.
, and
Hut
,
P.
,
1986
, “
A Hierarchical O(N log N) Force-Calculation Algorithm
,”
Nature
,
324
(
6096
), pp.
446
449
.
30.
Suppapitnarm
,
A.
,
Parks
,
G. T.
,
Shea
,
K.
, and
Clarkson
,
P. J.
,
2004
, “
Conceptual Design of Bicycle Frames by Multiobjective Shape Annealing
,”
Eng. Optim.
,
36
(
2
), pp.
165
188
.
31.
Königseder
,
C.
, and
Shea
,
K.
,
2015
, “
Comparing Strategies for Topologic and Parametric Rule Application in Automated Computational Design Synthesis
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011102
.
32.
Vale
,
C. A. W.
,
2002
, “
Multiobjective Dynamic Synthesis Via Machine Learning
,” Ph.D. dissertation, University of Cambridge, Cambridge, UK.
33.
Bolognini
,
F.
,
2008
, “
An Integrated Simulation-Based Generative Design Method for Microelectromechanical Systems
,” Ph.D. dissertation, University of Cambridge, Cambridge, UK.
34.
Stöckli
,
F. R.
, and
Shea
,
K.
,
2015
, “
A Simulation-Driven Graph Grammar Method for the Automated Synthesis of Passive Dynamic Brachiating Robots
,”
ASME
Paper No. DETC2015-47641.
35.
Schmidt
,
L. C.
,
Shetty
,
H.
, and
Chase
,
S. C.
,
2000
, “
A Graph Grammar Approach for Structure Synthesis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
371
376
.
36.
Li
,
X.
, and
Schmidt
,
L.
,
2004
, “
Grammar-Based Designer Assistance Tool for Epicyclic Gear Trains
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
895
902
.
37.
Lin
,
Y. S.
,
Shea
,
K.
,
Johnson
,
A.
,
Coultate
,
J.
, and
Pears
,
J.
,
2010
, “
A Method and Software Tool for Automated Gearbox Synthesis
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
Paper No. DETC2009-86935.
38.
Starling
,
A. C.
, and
Shea
,
K.
,
2005
, “
A Parallel Grammar for Simulation-Driven Mechanical Design Synthesis
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
Paper No. DETC2005-85414.
39.
Starling
,
A. C.
,
2004
, “
Performance-Based Computational Synthesis of Parametric Mechanical Systems
,” Ph.D. dissertation, University of Cambridge, Cambridge, UK.
40.
Swantner
,
A.
, and
Campbell
,
M. I.
,
2012
, “
Topological and Parametric Optimization of Gear Trains
,”
Eng. Optim.
,
44
(
11
), pp.
1351
1368
.
41.
Pomrehn
,
L. P.
, and
Papalambros
,
P. Y.
,
1995
, “
Discrete Optimal Design Formulations With-Application to Gear Train Design
,”
ASME J. Mech. Des.
,
117
(
3
), pp.
419
424
.
42.
Gary
,
S.
,
Mike
,
Y.
,
Jay
,
M.
, and
Timothy
,
S.
,
2004
, “
The ARL Trade Space Visualizer: An Engineering Decision-Making Tool
,”
AIAA
Paper No. AIAA 2004-4568.
43.
German
,
B. J.
,
Feigh
,
K. M.
, and
Daskilewicz
,
M. J.
,
2013
, “
An Experimental Study of Continuous and Discrete Visualization Paradigms for Interactive Trade Space Exploration
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021004
.
44.
Inselberg
,
A.
,
1985
, “
The Plane With Parallel Coordinates
,”
Visual Comput.
,
1
(
2
), pp.
69
91
.
45.
Hoisl
,
F.
, and
Shea
,
K.
,
2011
, “
An Interactive, Visual Approach to Developing and Applying Parametric Three-Dimensional Spatial Grammars
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
25
(
4
), pp.
333
356
.
46.
Seriai
,
A.
,
Benomar
,
O.
,
Cerat
,
B.
, and
Sahraoui
,
H.
,
2014
, “
Validation of Software Visualization Tools: A Systematic Mapping Study
,”
IEEE Working Conference on Software Visualization
, pp.
60
69
.
47.
Fekete
,
J.-D.
,
van Wijk
,
J.
,
Stasko
,
J.
, and
North
,
C.
,
2008
, “
The Value of Information Visualization
,”
Information Visualization
,
A.
Kerren
, et al. 
.
, eds.,
Springer
,
Berlin, Germany
, pp.
1
18
.
48.
van Wijk
,
J. J.
,
2006
, “
Views on Visualization
,”
IEEE Trans. Visualization Comput. Graphics
,
12
(
4
), pp.
421
432
.
You do not currently have access to this content.