Conventional reliability-based design optimization (RBDO) uses the mean of input random variable as its design variable; and the standard deviation (STD) of the random variable is a fixed constant. However, the constant STD may not correctly represent certain RBDO problems well, especially when a specified tolerance of the input random variable is present as a percentage of the mean value. For this kind of design problem, the STD of the input random variable should vary as the corresponding design variable changes. In this paper, a method to calculate the design sensitivity of the probability of failure for RBDO with varying STD is developed. For sampling-based RBDO, which uses Monte Carlo simulation (MCS) for reliability analysis, the design sensitivity of the probability of failure is derived using a first-order score function. The score function contains the effect of the change in the STD in addition to the change in the mean. As copulas are used for the design sensitivity, correlated input random variables also can be used for RBDO with varying STD. Moreover, the design sensitivity can be calculated efficiently during the evaluation of the probability of failure. Using a mathematical example, the accuracy and efficiency of the developed design sensitivity method are verified. The RBDO result for mathematical and physical problems indicates that the developed method provides accurate design sensitivity in the optimization process.

References

References
1.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.
2.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2001
, “
Design Potential Method for Robust System Parameter Design
,”
AIAA J.
,
39
(
4
), pp.
667
677
.
3.
Lee
,
I.
,
Choi
,
K. K.
, and
Gorsich
,
D.
,
2010
, “
System Reliability-Based Design Optimization Using the MPP-Based Dimension Reduction Method
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
823
839
.
4.
Lee
,
I.
,
Choi
,
K. K.
,
Noh
,
Y.
,
Zhao
,
L.
, and
Gorsich
,
D.
,
2011
, “
Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems With Correlated Random Variables
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021003
.
5.
Lee
,
I.
,
Choi
,
K. K.
, and
Zhao
,
L.
,
2011
, “
Sampling-Based RBDO Using the Stochastic Sensitivity Analysis and Dynamic Kriging Method
,”
Struct. Multidiscip. Optim.
,
44
(
3
), pp.
299
317
.
6.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
7.
Zou
,
T.
, and
Mahadevan
,
S.
,
2006
, “
A Direct Decoupling Approach for Efficient Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
190
200
.
8.
Kharmanda
,
G.
,
Mohamed
,
A.
, and
Lemaire
,
M.
,
2002
, “
Efficient Reliability-Based Design Optimization Using a Hybrid Space With Application to Finite Element Analysis
,”
Struct. Multidiscip. Optim.
,
24
(
3
), pp.
233
245
.
9.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2007
, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.
10.
Wang
,
B. P.
,
2004
, “
Mean Value Method for Reliability Based Optimization Revisited
,”
SAE
Technical Paper No. 2004-01-1126.
11.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
ASCE J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
.
12.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
13.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1988
, “
Improvement of Second‐Order Reliability Estimates by Importance Sampling
,”
J. Eng. Mech.
,
114
(
12
), pp.
2195
2199
.
14.
Breitung
,
K.
,
1984
, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
,
110
(
3
), pp.
357
366
.
15.
Lee
,
I.
,
Noh
,
Y.
, and
Yoo
,
D.
,
2012
, “
A Novel Second-Order Reliability Method (SORM) Using Non-Central or Generalized Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100912
.
16.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2014
, “
Second-Order Reliability Method-Based Inverse Reliability Analysis Using Hessian Update for Accurate and Efficient Reliability-Based Design Optimization
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
773
792
.
17.
Rahman
,
S.
, and
Wei
,
D.
,
2006
, “
A Univariate Approximation at Most Probable Point for Higher-Order Reliability Analysis
,”
Int. J. Solids Struct.
,
43
(
9
), pp.
2820
2839
.
18.
Hou
,
G. J. W.
,
2004
, “
A Most Probable Point-Based Method for Reliability Analysis, Sensitivity Analysis, and Design Optimization
,” NASA, Report No. NASA/CR-2004-213002.
19.
Yin
,
X.
, and
Chen
,
W.
,
2006
, “
Enhanced Sequential Optimization and Reliability Assessment Method for Probabilistic Optimization With Varying Design Variance
,”
Struct. Infrastruct. Eng.
,
2
(
3–4
), pp.
261
275
.
20.
Noh
,
Y.
,
Choi
,
K. K.
, and
Du
,
L.
,
2009
, “
Reliability-Based Design Optimization of Problems With Correlated Input Variables Using a Gaussian Copula
,”
Struct. Multidiscip. Optim.
,
38
(
1
), pp.
1
16
.
21.
Noh
,
Y.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2010
, “
Identification of Marginal and Joint CDFs Using Bayesian Method for RBDO
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
35
51
.
22.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2008
,
Simulation and the Monte Carlo Method
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
23.
Zhao
,
L.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2011
, “
Metamodeling Method Using Dynamic Kriging for Design Optimization
,”
AIAA J.
,
49
(
9
), pp.
2034
2046
.
24.
Nelsen
,
R. B.
,
2006
,
An Introduction to Copulas
,
2nd ed.
,
Springer
,
New York
.
25.
Rubinstein
,
R. Y.
, and
Shapiro
,
A.
,
1993
,
Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method
,
Wiley
,
New York
.
26.
Rahman
,
S.
,
2009
, “
Stochastic Sensitivity Analysis by Dimensional Decomposition and Score Functions
,”
Probab. Eng. Mech.
,
24
(
3
), pp.
278
287
.
27.
Geddes
,
K. O.
,
Glasser
,
M. L.
,
Moore
,
R. A.
, and
Scott
,
T. C.
,
1990
, “
Evaluation of Classes of Definite Integrals Involving Elementary Functions Via Differentiation of Special Functions
,”
Appl. Algebra Eng., Commun. Comput.
,
1
(
2
), pp.
149
165
.
28.
Cho
,
H.
,
Bae
,
S.
,
Choi
,
K. K.
,
Lamb
,
D.
, and
Yang
,
R.-J.
,
2014
, “
An Efficient Variable Screening Method for Effective Surrogate Models for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
50
(
5
), pp.
717
738
.
You do not currently have access to this content.