Computer simulations have been increasingly used to study physical problems in various fields. To relieve computational budgets, the cheap-to-run metamodels, constructed from finite experiment points in the design space using the design of computer experiments (DOE), are employed to replace the costly simulation models. A key issue related to DOE is designing sequential computer experiments to achieve an accurate metamodel with as few points as possible. This article investigates the performance of current Bayesian sampling approaches and proposes an adaptive maximum entropy (AME) approach. In the proposed approach, the leave-one-out (LOO) cross-validation error estimates the error information in an easy way, the local space-filling exploration strategy avoids the clustering problem, and the search pattern from global to local improves the sampling efficiency. A comparison study of six examples with different types of initial points demonstrated that the AME approach is very promising for global metamodeling.

References

References
1.
Geman
,
S.
, and
Geman
,
D.
,
1984
, “
Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
6
(
6
), pp.
721
741
.
2.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.
3.
Kleijnen
,
J. P.
,
2009
, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
(
3
), pp.
707
716
.
4.
Currin
,
C.
,
Mitchell
,
T.
,
Morris
,
M.
, and
Ylvisaker
,
D.
,
1991
, “
Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments
,”
J. Am. Stat. Assoc.
,
86
(
416
), pp.
953
963
.
5.
Shewry
,
M. C.
, and
Wynn
,
H. P.
,
1987
, “
Maximum Entropy Sampling
,”
J. Appl. Stat.
,
14
(
2
), pp.
165
170
.
6.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
7.
Koehler
,
J.
, and
Owen
,
A.
,
1996
, “
Computer Experiments
,”
Handb. Stat.
,
13
(
13
), pp.
261
308
.
8.
Lin
,
Y.
,
Mistree
,
F.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Chen
,
V. C.
,
2004
, “
A Sequential Exploratory Experimental Design Method: Development of Appropriate Empirical Models in Design
,”
ASME
Paper No. DETC2004-57527.
9.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
,
2005
, “
Bayesian Meta-Modelling of Engineering Design Simulations: A Sequential Approach With Adaptation to Irregularities in the Response Behaviour
,”
Int. J. Numer. Methods Eng.
,
62
(
15
), pp.
2104
2126
.
10.
Lam
,
C. Q.
,
2008
, “
Sequential Adaptive Designs in Computer Experiments for Response Surface Model Fit
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
11.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
12.
Mardia
,
K. V.
, and
Marshall
,
R.
,
1984
, “
Maximum Likelihood Estimation of Models for Residual Covariance in Spatial Regression
,”
Biometrika
,
71
(
1
), pp.
135
146
.
13.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2002
, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
ASME
Paper No. DETC2002/DAC-34092.
14.
Viana
,
F. A.
,
Haftka
,
R. T.
, and
Steffen
,
V.
, Jr.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscip. Optim.
,
39
(
4
), pp.
439
457
.
15.
Li
,
G.
,
Aute
,
V.
, and
Azarm
,
S.
,
2010
, “
An Accumulative Error Based Adaptive Design of Experiments for Offline Metamodeling
,”
Struct. Multidiscip. Optim.
,
40
(
1
), pp.
137
155
.
16.
Aute
,
V.
,
Saleh
,
K.
,
Abdelaziz
,
O.
,
Azarm
,
S.
, and
Radermacher
,
R.
,
2013
, “
Cross-Validation Based Single Response Adaptive Design of Experiments for Kriging Metamodeling of Deterministic Computer Simulations
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
581
605
.
17.
Xu
,
S. L.
,
Liu
,
H. T.
,
Wang
,
X. F.
, and
Jiang
,
X. M.
,
2014
, “
A Robust Error-Pursuing Sequential Sampling Approach for Global Metamodeling Based on Voronoi Diagram and Cross Validation
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071009
.
18.
Joseph
,
V. R.
,
Hung
,
Y.
, and
Sudjianto
,
A.
,
2008
, “
Blind Kriging: A New Method for Developing Metamodels
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031102
.
19.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
20.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
, “
DACE—A Matlab Kriging Toolbox—Version 2.0, Informatics and Mathematical Modelling
,” Technical University of Denmark, Kgs. Lyngby, Denmark, Report No. IMMREP-2002-12.
21.
Morris
,
M. D.
,
Mitchell
,
T. J.
, and
Ylvisaker
,
D.
,
1993
, “
Bayesian Design and Analysis of Computer Experiments: Use of Derivatives in Surface Prediction
,”
Technometrics
,
35
(
3
), pp.
243
255
.
22.
An
,
J.
, and
Owen
,
A.
,
2001
, “
Quasi-Regression
,”
J. Complexity
,
17
(
4
), pp.
588
607
.
23.
Viana
,
F. A.
,
Venter
,
G.
, and
Balabanov
,
V.
,
2010
, “
An Algorithm for Fast Optimal Latin Hypercube Design of Experiments
,”
Int. J. Numer. Methods Eng.
,
82
(
2
), pp.
135
156
.
You do not currently have access to this content.