In conjoint analysis, interaction effects characterize how preference for the level of one product attribute is dependent on the level of another attribute. When interaction effects are negligible, a main effects fractional factorial experimental design can be used to reduce data requirements and survey cost. This is particularly important when the presence of many parameters or levels makes full factorial designs intractable. However, if interaction effects are relevant, main effects design can create biased estimates and lead to erroneous conclusions. This work investigates consumer preference interactions in the nontraditional context of visual choice-based conjoint analysis, where the conjoint attributes are parameters that define a product's shape. Although many conjoint studies assume interaction effects to be negligible, they may play a larger role for shape parameters. The role of interaction effects is explored in two visual conjoint case studies. The results suggest that interactions can be either negligible or dominant in visual conjoint, depending on consumer preferences. Generally, we suggest using randomized designs to avoid any bias resulting from the presence of interaction effects.

References

References
1.
Green
,
P. E.
, and
Rao
,
V. R.
,
1971
, “
Conjoint Measurement for Quantifying Judgmental Data
,”
J. Mark. Res.
,
8
(
3
), pp.
355
363
.
2.
Huber
,
J.
, and
Zwerina
,
K.
,
1996
, “
The Importance of Utility Balance in Efficient Choice Designs
,”
J. Mark. Res.
,
33
(
3
), pp.
307
317
.
3.
Huber
,
J.
,
2004
, “
Conjoint Analysis: How We Got Here and Where We Are (An Update)
,”
Sawtooth Software Conference Proceedings
,
Sawtooth Software
,
Sequim, WA
.
4.
Swamy
,
S.
,
Orsborn
,
S.
,
Michalek
,
J.
, and
Cagan
,
J.
,
2007
, “
Measurement of Headlight Form Preference Using Choice-Based Conjoint Analysis
,”
ASME
Paper No. DETC2007-35409.
5.
Petiot
,
J.-F.
, and
Dagher
,
A.
,
2010
, “
Preference-Oriented Form Design: Application to Cars' Headlights
,”
Int. J. Interact. Des. Manuf.
,
5
(
1
), pp.
17
27
.
6.
Reid
,
T. N.
,
Gonzalez
,
R. D.
, and
Papalambros
,
P. Y.
,
2010
, “
Quantification of Perceived Environmental Friendliness for Vehicle Silhouette Design
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101010
.
7.
Kelly
,
J. C.
,
Maheut
,
P.
,
Petiot
,
J.-F.
, and
Papalambros
,
P. Y.
,
2011
, “
Incorporating User Shape Preference in Engineering Design Optimisation
,”
J. Eng. Des.
,
22
(
9
), pp.
627
650
.
8.
Tseng
,
I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2012
, “
Concurrent Optimization of Computationally Learned Stylistic Form and Functional Goals
,”
ASME J. Mech. Des.
,
134
(
11
), p.
111006
.
9.
Sylcott
,
B.
,
Cagan
,
J.
, and
Tabibnia
,
G.
,
2013
, “
Understanding Consumer Tradeoffs Between Form and Function Through Metaconjoint and Cognitive Neuroscience Analyses
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101002
.
10.
Green
,
P. E.
, and
Srinivasan
,
V.
,
1990
, “
Conjoint Analysis in Marketing: New Developments With Implications for Research and Practice
,”
J. Mark.
,
54
(
4
), pp.
3
19
.
11.
Thurston
,
D. L.
,
2001
, “
Real and Misconceived Limitations to Decision Based Design With Utility Analysis
,”
ASME J. Mech. Des.
,
123
(
2
), pp.
176
182
.
12.
Abbas
,
A. E.
,
2009
, “
Multiattribute Utility Copulas
,”
Oper. Res.
,
57
(
6
), pp.
1367
1383
.
13.
Ross
,
A. M.
,
Hastings
,
D. E.
,
Warmkessel
,
J. M.
, and
Diller
,
N. P.
,
2004
, “
Multi-Attribute Tradespace Exploration as Front End for Effective Space System Design
,”
J. Spacecr. Rockets
,
41
(
1
), pp.
20
28
.
14.
Kulok
,
M.
, and
Lewis
,
K.
,
2007
, “
A Method to Ensure Preference Consistency in Multi-Attribute Selection Decisions
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1002
1011
.
15.
Hagerty
,
M.
,
1986
, “
The Cost of Simplifying Preference Models
,”
Mark. Sci.
,
5
(
4
), pp.
298
319
.
16.
Train
,
K. E.
,
2003
,
Discrete Choice Methods With Simulation
,
Cambridge University Press
,
New York
.
17.
Orme
,
B. K.
,
Alpert
,
M. I.
, and
Christensen
,
E.
,
1997
, “
Assessing the Validity of Conjoint Analysis-Continued
,”
Sawtooth Software Conference Proceedings
,
Sawtooth Software
,
Sequim, WA
.
18.
Kuhfeld
,
W. F.
,
2010
, “
Marketing Research Methods in SAS. Experimental Design, Choice, Conjoint, and Graphical Techniques
,”
SAS Institute Inc.
,
Cary, NC
,
19.
Sylcott
,
B.
,
2013
, “
Understanding the Role of Aesthetic Judgment in Consumer Choice and Preference Modeling
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
20.
Chrzan
,
K.
, and
Orme
,
B.
,
2000
, “
An Overview and Comparison of Design Strategies for Choice-Based Conjoint Analysis
,”
Sawtooth Software Conference Proceedings
,
Hilton Head Island, SC, Sawtooth Software
,
Sequim, WA
.
21.
Train
,
K.
,
1998
, “
Recreation Demand Models With Taste Differences Over People
,”
Land Econ.
,
74
(
2
), pp.
230
239
.
22.
Orme
,
B.
,
2000
, “
Hierarchical Bayes: Why All the Attention?
Sawtooth Software Conference Proceedings
.
You do not currently have access to this content.