The conditions of meshing and contact in hypoid gear drives depend substantially on the machine-tool settings to be applied. Determination of gear geometry is the first step in the design process of a hypoid gear drive. An approach for determination of basic machine-tool settings for face-hobbed and face-milled hypoid gears is proposed, covering the cases when the gear is generated and nongenerated. Gear basic machine-tool settings are determined from the blank data that can be obtained from application of Standard ANSI/AGMA 2005-C96. Some machine-tool settings are determined analytically considering the imaginary generation of the gear by a crown gear. Some other machine-tool settings are obtained numerically in order to provide some given blank data as the normal chordal tooth thickness and the normal pressure angles of the gear teeth. The developed theory is illustrated with numerical examples.

References

1.
Litvin
,
F. L.
,
Chaing
,
W.-S.
,
Kuan
,
C.
,
Lundy
,
M.
, and
Tsung
,
W. J.
,
1991
, “
Generation and Geometry of Hypoid Gear-Member With Face-Hobbed Teeth of Uniform Depth
,”
Int. J. Mach. Tools Manuf.
,
31
(
2
), pp.
167
181
.
2.
Stadtfeld
,
H. J.
,
2000
,
Advanced Bevel Gear Technology
,
The Gleason Works
,
Rochester, NY
.
3.
Vecchiato
,
D.
,
2004
, “
Computerized Design, Simulation of Face-Hobbed Hypoid Gears, and Tooth Contact Analysis of Loaded Gear Drives by Boundary Element Method
,” Ph.D. thesis, University of Illinois, Chicago, IL.
4.
Fan
,
Q.
,
2006
, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1315
1327
.
5.
Vimercati
,
M.
,
2007
, “
Mathematical Model for Tooth Surfaces Representation of Face-Hobbed Hypoid Gears and Its Application to Contact Analysis and Stress Calculation
,”
Mech. Mach. Theory
,
42
(
6
), pp.
668
690
.
6.
Shih
,
Y.-P.
,
Fong
,
Z.-H.
, and
Lin
,
G. C. Y.
,
2007
, “
Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
38
47
.
7.
Litvin
,
F. L.
, and
Gutman
,
Y.
,
1981
, “
Methods of Synthesis and Analysis for Hypoid Gear Drives of Formate and Helixform—Part 1
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
83
88
.
8.
Litvin
,
F. L.
, and
Gutman
,
Y.
,
1981
, “
Methods of Synthesis and Analysis for Hypoid Gear Drives of Formate and Helixform—Part 2
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
89
101
.
9.
Litvin
,
F. L.
, and
Gutman
,
Y.
,
1981
, “
Methods of Synthesis and Analysis for Hypoid Gear Drives of Formate and Helixform—Part 3
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
102
110
.
10.
Zhang
,
Y.
,
Litvin
,
F. L.
, and
Handschuh
,
R. F.
,
1995
, “
Computerized Design of Low-Noise Face-Milled Spiral Bevel Gears
,”
Mech. Mach. Theory
,
30
(
8
), pp.
1171
1178
.
11.
Lin
,
C.-Y.
,
Tsay
,
C.-B.
, and
Fong
,
Z.-H.
,
1997
, “
Mathematical Model of Spiral Bevel and Hypoid Gears Manufactured by the Modified Roll Method
,”
Mech. Mach. Theory
,
32
(
2
), pp.
121
136
.
12.
Gosselin
,
C.
,
Nonaka
,
T.
,
Shiono
,
Y.
,
Kubo
,
A.
, and
Tatsuno
,
T.
,
1998
, “
Identification of the Machine Setting of Real Hypoid Gear Tooth Surfaces
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
429
440
.
13.
Kawasaki
,
K.
, and
Tamura
,
H.
,
1998
, “
Duplex Spread Blade Method for Cutting Hypoid Gears With Modified Tooth Surface
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
441
447
.
14.
Argyris
,
J.
,
Fuentes
,
A.
, and
Litvin
,
F. L.
,
2002
, “
Computerized Integrated Approach for Design and Stress Analysis of Spiral Bevel Gears
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
11–12
), pp.
1057
1095
.
15.
Wang
,
P.-Y.
, and
Fong
,
Z.-H.
,
2006
, “
Fourth-Order Kinematic Synthesis for Face-Milling Spiral Bevel Gears With Modified Radial Motion (MRM) Correction
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
457
467
.
16.
Achtmann
,
J.
, and
Bär
,
G.
,
2003
, “
Optimized Bearing Ellipses of Hypoid Gears
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
739
745
.
17.
Simon
,
V.
,
2005
, “
Optimal Tooth Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
646
655
.
18.
Fan
,
Q.
,
2010
, “
Tooth Surface Error Correction for Face-Hobbed Hypoid Gears
,”
ASME J. Mech. Des.
,
132
(
1
), p.
0110041
.
19.
Artoni
,
A.
,
Gabiccini
,
M.
,
Guiggiani
,
M.
, and
Kahraman
,
A.
,
2011
, “
Multi-Objective Ease-Off Optimization of Hypoid Gears for Their Efficiency, Noise, and Durability Performances
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121007
.
20.
Gonzalez-Perez
,
I.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
,
2010
, “
Analytical Determination of Basic Machine-Tool Settings for Generation of Spiral Bevel Gears From Blank Data
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101002
.
21.
American Gear Manufacturers Association
,
2005
,
ANSI/AGMA 2005-C96, Design Manual of Bevel Gears
,
AGMA
,
Alexandria, VA
.
22.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
New York
.
23.
Jaluria
,
Y.
,
1996
,
Computer Methods for Engineering
,
Taylor & Francis
,
New York
.
You do not currently have access to this content.