A free-floating space robot equipped with multiple reconfigurable manipulators is designed and investigated in this paper. Lockable passive cylindrical joints (PCJs) are utilized to make the manipulator have the ability of changing its length and twisted angle. Each cylindrical joint, connecting two adjacent rigid links, has no embedded actuators but a brake mechanism. Normally, the mechanism is locked during the operation. When in the reconfiguration stage, two manipulators grasp each other to form a closed loop. Then one PCJ is unlocked, whose relative rotation and translation can be changed by the active torques at other joints. This system is a typical space multibody system. The dynamics of the space robot with unlocked cylindrical joints and a closed structural loop is investigated. The equations of motion are derived through Maggi–Kane's method. The obtained mathematical model is free of multipliers, which makes it suitable for controller design. A trajectory planning algorithm capable of avoiding the configuration singularity of the manipulators is proposed. A slide mode controller embedded with an extended state observer (ESO) is designed for the trajectory tracking control. Numerical simulations demonstrate the effectiveness of the trajectory planning and control strategy for the reconfiguration process.

References

References
1.
Ghafoor
,
N.
, and
Sallaberger
,
C.
,
2006
, “
Canadian Robotic Systems for Space Exploration
,” 57th International Astronautical Congress, Valencia, Spain, Oct. 2–6, Paper No. IAC-06-A5.2.03.
2.
Nguyen Huynh
,
T. C.
, and
Sharf
,
I.
,
2010
, “
Capture of Spinning Target With Space Manipulator Using Magneto Rheological Damper
,”
AIAA
Paper No. 2010-7753.
3.
Akin
,
D. L.
,
2009
, “
Integrating Dexterous Robotics Into the Constellation Architecture: Challenges and Opportunities
,”
AIAA
Paper No. 2009-1867.
4.
Kumar
,
A.
, and
Waldron
,
K. J.
,
1981
, “
The Workspaces of a Mechanical Manipulator
,”
ASME J. Mech. Des.
,
103
(
3
), pp.
665
672
.
5.
Gupta
,
K. C.
, and
Roth
,
B.
,
1982
, “
Design Considerations for Manipulator Workspace
,”
ASME J. Mech. Des.
,
104
(
4
), pp.
704
711
.
6.
Zhu
,
W.
,
Lamarche
,
T.
,
Dupuis
,
E.
,
Jameux
,
D.
,
Barnard
,
P.
, and
Liu
,
G.
,
2013
, “
Precision Control of Modular Robot Manipulators: The VDC Approach With Embedded FPGA
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1162
1179
.
7.
Aghili
,
F.
, and
Parsa
,
K.
,
2009
, “
A Reconfigurable Robot With Lockable Cylindrical Joints
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
785
797
.
8.
Aghili
,
F.
,
2010
, “
A Reconfigurable Robot With Telescopic Links for In-Space Servicing
,”
AIAA
Paper No. 2010-8021.
9.
Wang
,
J. T.
, and
Huston
,
R. L.
,
1987
, “
Kane's Equations With Undetermined Multipliers-Application of Constrained Multibody Systems
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
424
429
.
10.
Mariti
,
L.
,
Belfiore
,
N. P.
,
Pennestrì
,
E.
, and
Valentini
,
P. P.
,
2011
, “
Comparison of Solution Strategies for Multibody Dynamics Equations
,”
Int. J. Numer. Methods Eng.
,
88
(
7
), pp.
637
656
.
11.
Cheng
,
H.
,
Yiu
,
Y.
, and
Li
,
Z.
,
2003
, “
Dynamics and Control of Redundantly Actuated Parallel Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
8
(
4
), pp.
483
491
.
12.
Banerjee
,
A. K.
,
2003
, “
Contributions of Multibody Dynamics to Space Flight: A Brief Review
,”
J. Guid. Control Dyn.
,
26
(
3
), pp.
385
394
.
13.
Muller
,
A.
,
2011
, “
Semialgebraic Regularization of Kinematic Loop Constraints in Multibody System Models
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041010
.
14.
Saha
,
S. K.
,
1997
, “
A Decomposition of the Manipulator Inertia Matrix
,”
IEEE Trans. Rob. Autom.
,
13
(
2
), pp.
301
304
.
15.
Saha
,
S. K.
,
1999
, “
Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices
,”
ASME J. Appl. Mech.
,
66
(
4
), pp.
986
996
.
16.
Shah
,
S. V.
,
Saha
,
S. K.
, and
Dutt
,
J. K.
,
2013
,
Dynamics of Tree-Type Robotic Systems
,
Springer
,
Dordrecht, The Netherlands
.
17.
Banerjee
,
A. K.
, and
Kane
,
T. R.
,
1984
, “
Large Motion Dynamics of a Spacecraft With a Closed-Loop, Articulated, Flexible Appendage
,”
AIAA
Paper No. A84-34911.
18.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics Theory and Application
,
McGraw-Hill
,
New York
.
19.
Bajodah
,
A. H.
,
Hodges
,
D. H.
, and
Chen
,
Y. H.
,
2003
, “
A New Form of Kane's Equations of Motion for Constrained Systems
,”
J. Guid. Control Dyn.
,
26
(
1
), pp.
79
88
.
20.
Hu
,
Q.
,
Jia
,
Y.
, and
Xu
,
S.
,
2012
, “
A New Computer-Oriented Approach With Efficient Variables for Multibody Dynamics With Motion Constraints
,”
Acta Astronaut.
,
81
(
1
), pp.
380
389
.
21.
De
Silva
,
C. W.
,
1991
, “
Trajectory Design for Robotic Manipulators in Space Applications
,”
J. Guid. Control Dyn.
,
14
(
3
), pp.
670
674
.
22.
Yale
,
G. E.
, and
Agrawal
,
B. N.
,
1998
, “
Lyapunov Controller for Cooperative Space Manipulators
,”
J. Guid. Control Dyn.
,
21
(
3
), pp.
477
484
.
23.
Su
,
H. J.
,
Dietmaier
,
P.
, and
McCarthy
,
J. M.
,
2004
, “
Trajectory Planning for Constrained Parallel Manipulators
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
709
716
.
24.
Wang
,
Z.
, and
Ghorbel
,
F. H.
,
2006
, “
Control of Closed Kinematic Chains Using a Singularly Perturbed Dynamics Model
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
1
), pp.
142
151
.
25.
Ghorbel
,
F. H.
,
Chetelat
,
O.
,
Gunawardana
,
R.
, and
Longchamp
,
R.
,
2000
, “
Modeling and Set Point Control of Closed-Chain Mechanisms: Theory and Experiment
,”
IEEE Trans. Control Syst. Technol.
,
8
(
5
), pp.
801
815
.
26.
Hughes
,
P. C.
,
1986
,
Spacecraft Attitude Dynamics
,
Wiley
,
New York
, pp.
522
534
.
27.
Banerjee
,
A. K.
, and
Lemak
,
M. E.
,
2007
, “
Recursive Algorithm With Efficient Variables for Flexible Multibody Dynamics With Multiloop Constraints
,”
J. Guid. Control Dyn.
,
30
(
3
), pp.
780
790
.
28.
Yoon
,
S.
,
Howe
,
R. M.
, and
Greenwood
,
D. T.
,
1995
, “
Stability and Accuracy Analysis of Baumgarte's Constraint Violation Stabilization Method
,”
ASME J. Mech. Des.
,
117
(
3
), pp.
446
453
.
29.
Bauchau
,
O. A.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
011005
.
30.
Kurdila
,
A. K.
,
1990
, “
Multibody Dynamics Formulations Using Maggi's Approach
,”
Mechanics and Control of Large Flexible Structures
,
J. L.
Junkins
, ed.,
American Institute of Aeronautics and Astronautics
,
Washington, DC
, pp.
101
144
.
31.
Shah
,
S. V.
,
Saha
,
S. K.
, and
Dutt
,
J. K.
,
2012
, “
Modular Framework for Dynamics of Tree-Type Legged Robots
,”
Mech. Mach. Theory
,
49
, pp.
234
255
.
32.
Wie
,
B.
,
2005
, “
Singularity Escape/Avoidance Steering Logic for Control Moment Gyro Systems
,”
J. Guid. Control Dyn.
,
28
(
5
), pp.
948
956
.
33.
Kurokawa
,
H.
,
2007
, “
Survey of Theory and Steering Laws of Single-Gimbal Control Moment Gyros
,”
J. Guid. Control Dyn.
,
30
(
5
), pp.
1331
1340
.
34.
Jia
,
Y.
,
Hu
,
Q.
, and
Xu
,
S.
,
2013
, “
Dynamics of a Spacecraft With Motion Constrained Multi-Strut Passive Damper for Large Flexible Appendage
,”
Acta Mech. Sin.
,
29
(
2
), pp.
294
308
.
35.
Huang
,
Y.
, and
Han
,
J.
,
2000
, “
Analysis and Design for the Second Order Nonlinear Continuous Extended States Observer
,”
Chin. Sci. Bull.
,
45
(
21
), pp.
1938
1944
.
36.
Walker
,
M. W.
, and
Orin
,
D. E.
,
1982
, “
Efficient Dynamic Computer Simulation of Robotic Mechanisms
,”
ASME J. Dyn. Syst., Meas., Control
,
104
(
3
), pp.
205
211
.
37.
Fijany
,
A.
,
Sharf
,
I.
, and
D'Eleuterio
,
G. M. T.
,
1995
, “
Parallel O(log N) Algorithms for Computation of Manipulator Forward Dynamics
,”
IEEE Trans. Rob. Autom.
,
11
(
3
), pp.
389
400
.
38.
Agarwal
,
A.
,
Shah
,
S. V.
,
Bandyopadhyay
,
S.
, and
Saha
,
S. K.
,
2014
, “
Dynamics of Serial Kinematic Chains With Large Number of Degrees-of-Freedom
,”
Multibody Syst. Dyn.
,
32
(
3
), pp.
273
298
.
39.
Banerjee
,
A. K.
,
1993
, “
Block-Diagonal Equations for Multibody Elastodynamics With Geometric Stiffness and Constraints
,”
J. Guid. Control Dyn.
,
16
(
6
), pp.
1092
1100
.
40.
Guo
,
B.
, and
Zhao
,
Z.
,
2011
, “
On the Convergence of an Extended State Observer for Nonlinear Systems With Uncertainty
,”
Syst. Control Lett.
,
60
(
6
), pp.
420
430
.
41.
Guo
,
B.
, and
Zhao
,
Z.
,
2013
, “
On Convergence of the Nonlinear Active Disturbance Rejection Control for MIMO Systems
,”
SIAM J. Control Optim.
,
51
(
2
), pp.
1727
1757
.
You do not currently have access to this content.