This paper proposes a topology optimization framework to design compliant mechanisms with a mixed mesh of both beams and flexure hinges for the design domain. Further, a new type of finite element, i.e., super flexure hinge element, was developed to model flexure hinges. Then, an investigation into the effects of the location and size of a flexure hinge in a compliant lever explains why the point-flexure problem often occurs in the resulting design via topology optimization. Two design examples were presented to verify the proposed technique. The effects of link widths and hinge radii were also investigated. The results demonstrated that the proposed meshing scheme and topology optimization technique facilitate the rational decision on the locations and sizes of beams and flexure hinges in compliant mechanisms.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Clement
,
R.
,
Huang
,
J. L.
,
Sun
,
Z. H.
,
Wang
,
J. Z.
, and
Zhang
,
W. J.
,
2013
, “
Motion and Stress Analysis of Direct-Driven Compliant Mechanisms With General-Purpose Finite Element Software
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1409
1421
.
3.
Dinesh
,
M.
, and
Ananthasuresh
,
G. K.
,
2010
, “
Micro-Mechanical Stages With Enhanced Range
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
2
(
1–2
), pp.
35
43
.
4.
Yong
,
Y. K.
,
Aphale
,
S. S.
, and
Moheimani
,
S. R.
,
2009
, “
Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning
,”
IEEE Trans. Nanotechnol.
,
8
(
1
), pp.
46
54
.
5.
Zubir
,
M. N. M.
, and
Shirinzadeh
,
B.
,
2009
, “
Development of a Novel Flexure Based Microgripper for Precision Manipulation of Micro-Objects
,”
IEEE International Conference on Industrial Technology
(
ICIT 2009
), Gippsland, Australia, Feb. 10–13.
6.
Polit
,
S.
, and
Dong
,
J.
,
2009
, “
Design of High-Bandwidth High-Precision Flexure-Based Nanopositioning Modules
,”
J. Manuf. Syst.,
28
(
2–3
), pp.
71
77
.
7.
Rubbert
,
L.
,
Caro
,
S.
,
Gangloff
,
J.
, and
Renaud
,
P.
,
2014
, “
Using Singularities of Parallel Manipulators to Enhance the Rigid-Body Replacement Design Method of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051010
.
8.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
9.
Krishnakumar
,
A.
, and
Suresh
,
K.
,
2015
, “
Hinge-Free Compliant Mechanism Design Via the Topological Level-Set
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031406
.
10.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
,
1996
, “
The Topological Synthesis of Compliant Mechanisms
,”
Mech. Mach. Theory
,
31
(
2
), pp.
185
199
.
11.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
12.
Verotti
,
M.
,
Crescenzi
,
R.
,
Balucani
,
M.
, and
Belfiore
,
N. P.
,
2015
, “
MEMS-Based Conjugate Surfaces Flexure Hinge
,”
ASME J. Mech. Des.
,
137
(
1
), p.
012301
.
13.
Lobontiu
,
N.
,
2014
, “
In-Plane Compliances of Planar Flexure Hinges With Serially Connected Straight- and Circular-Axis Segments
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122301
.
14.
Chen
,
G.
,
Wang
,
J.
, and
Liu
,
X.
,
2014
, “
Generalized Equations for Estimating Stress Concentration Factors of Various Notch Flexure Hinges
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031009
.
15.
Zhuang
,
C.
,
Xu
,
M.
, and
Xiong
,
Z.
,
2013
, “
Multi-Objective Topology Optimization of Compliant Mechanism for Fast Tool Servo
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing
(
AIM
), Wollongong, Australia, July 9–12, pp.
241
246
.
16.
Cao
,
L.
,
Dolovich
,
A.
, and
Zhang
,
W. J.
,
2013
, “
On Understanding of Design Problem Formulation for Compliant Mechanisms Through Topology Optimization
,”
Mech. Sci.
,
4
(
2
), pp.
357
369
.
17.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.
18.
Min
,
S.
, and
Kim
,
Y.
,
2004
, “
Topology Optimization of Compliant Mechanism With Geometrical Advantage
,”
JSME Int. J., Ser. C
,
47
(
2
), pp.
610
615
.
19.
Zhou
,
H.
, and
Mandala
,
A. R.
,
2012
, “
Topology Optimization of Compliant Mechanisms Using the Improved Quadrilateral Discretization Model
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021007
.
20.
Limaye
,
P.
,
Ramu
,
G.
,
Pamulapati
,
S.
, and
Ananthasuresh
,
G. K.
,
2012
, “
A Compliant Mechanism Kit With Flexible Beams and Connectors Along With Analysis and Optimal Synthesis Procedures
,”
Mech. Mach. Theory
,
49
, pp.
21
39
.
21.
Zhou
,
H.
,
2010
, “
Topology Optimization of Compliant Mechanisms Using Hybrid Discretization Model
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111003
.
22.
Talischi
,
C.
,
Paulino
,
G. H.
,
Pereira
,
A.
, and
Menezes
,
I. F. M.
,
2010
, “
Polygonal Finite Elements for Topology Optimization: A Unifying Paradigm
,”
Int. J. Numer. Methods Eng.
,
82
(
6
), pp.
671
698
.
23.
Ramrakhyani
,
D.
,
Frecker
,
M.
, and
Lesieutre
,
G.
,
2009
, “
Hinged Beam Elements for the Topology Design of Compliant Mechanisms Using the Ground Structure Approach
,”
Struct. Multidiscip. Optim.
,
37
(
6
), pp.
557
567
.
24.
Wang
,
F.
,
Lazarov
,
B.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
6
), pp.
767
784
.
25.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031007
.
26.
Li
,
Y.
,
Huang
,
X.
,
Xie
,
Y. M.
, and
Zhou
,
S. W.
,
2014
, “
Evolutionary Topology Optimization of Hinge-Free Compliant Mechanisms
,”
Int. J. Mech. Sci.
,
86
, pp.
69
75
.
27.
Joo
,
J.
, and
Kota
,
S.
,
2004
, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
,
32
(
1
), pp.
17
38
.
28.
Joo
,
J.
,
Kota
,
S.
, and
Kikuchi
,
N.
,
2000
, “
Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements
,”
Mech. Struct. Mach.
,
28
(
4
), pp.
245
280
.
29.
Yong
,
Y. K.
,
Lu
,
T.-F.
, and
Handley
,
D. C.
,
2008
, “
Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations
,”
Precis. Eng.
,
32
(
2
), pp.
63
70
.
30.
Schotborgh
,
W. O.
,
Kokkeler
,
F. G.
,
Tragter
,
H.
, and
van Houten
,
F. J.
,
2005
, “
Dimensionless Design Graphs for Flexure Elements and a Comparison Between Three Flexure Elements
,”
Precis. Eng.
,
29
(
1
), pp.
41
47
.
31.
Lobontiu
,
N.
,
2010
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
32.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
33.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
31
(
2
), pp.
151
179
.
34.
Lee
,
E.
,
2011
, “
A Strain Based Topology Optimization Method
,” Ph.D. dissertation, Rutgers The State University of New Jersey, New Brunswick, NJ.
35.
Cardoso
,
E. L.
, and
Fonseca
,
J. S. O.
,
2004
, “
Strain Energy Maximization Approach to the Design of Fully Compliant Mechanisms Using Topology Optimization
,”
Lat. Am. J. Solids Struct.
,
1
(
3
), pp.
263
275
.
36.
Wang
,
M. Y.
,
2009
, “
A Kinetoelastic Formulation of Compliant Mechanism Optimization
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021011
.
37.
MathWorks,
2015
, “
Global Optimization Toolbox User's Guide (R2015a)
,” The MathWorks Inc., Natick, MA, http://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
38.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
39.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2013
, “
A Metric to Evaluate and Synthesize Distributed Compliant Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011004
.
You do not currently have access to this content.