In this paper, the design and modeling of a large amplitude compliant revolute joint are introduced. Based on the implementation of multimaterial additive manufacturing (MM-AM), the joint is of interest for robotic contexts where the design of compact and accurate compliant mechanisms is required. The joint design is first experimentally proven to offer a large range of motion and satisfying kinetostatic properties. A parametric study is then conducted using numerical simulation to define the most interesting geometries. An experimental study is in a third step presented to estimate the rotational stiffness, including the manufacturing impact. A stiffness model is provided for relevant geometries, and their use is finally discussed in the context of compliant mechanism design.

References

References
1.
Clark
,
J. E.
,
Cham
,
J.
,
Bailey
,
S. A.
,
Froehlich
,
E. M.
,
Nahata
,
P. K.
,
Full
,
R. J.
, and
Cutkosky
,
M. R.
,
2001
, “
Biomimetic Design and Fabrication of a Hexapedal Running Robot
,”
IEEE International Conference on Robotics and Automation
, pp.
3643
3649
.
2.
Wood
,
R. J.
,
2008
, “
The First Takeoff of a Biologically Inspired At-Scale Robotic Insect
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
341
347
.10.1109/TRO.2008.916997
3.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2013
, “
Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041017
.10.1115/1.4025298
4.
Elhawary
,
H.
,
Tse
,
Z. T. H.
,
Hamed
,
A.
,
Rea
,
M.
,
Davies
,
B. L.
, and
Lamperth
,
M. L.
,
2008
, “
The Case for MR-Compatible Robotics: A Review of the State of the Art
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
4
(
2
), pp.
105
113
.10.1002/rcs.192
5.
Abdelaziz
,
S.
,
Esteveny
,
L.
,
Barbé
,
L.
,
Renaud
,
P.
,
Bayle
,
B.
, and
De Mathelin
,
M.
,
2014
, “
Design of a Magnetic Resonance Imaging-Compatible Cable-Driven Manipulator With New Instrumentation and Synthesis Methods
,”
ASME J. Mech. Des.
,
136
(
9
), pp.
105
113
.10.1115/1.4027783
6.
Bruyas
,
A.
,
Geiskopf
,
F.
,
Meylheuc
,
L.
, and
Renaud
,
P.
,
2014
, “
Combining Multi-Material Rapid Prototyping and Pseudo-Rigid Body Modeling for a New Compliant Mechanism
,”
IEEE International Conference on Robotics and Automation
, pp.
3390
3396
.
7.
Trease
,
B. P.
,
Moon
,
Y.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.10.1115/1.1900149
8.
Lobontiu
,
N.
,
2010
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
9.
Berselli
,
G.
,
Piccinini
,
M.
, and
Vassura
,
G.
,
2011
, “
Comparative Evaluation of the Selective Compliance in Elastic Joints for Robotic Structures
,”
IEEE International Conference on Robotics and Automation
, pp.
4626
4631
.
10.
Mirth
,
J.
,
2014
, “
An Examination of Trispiral Hinges Suitable for Use in ABS-Based Rapid Prototyping of Compliant Mechanisms
,”
ASME
Paper No. DETC2014-34075. 10.1115/DETC2014-34075
11.
Cutkosky
,
M. R.
, and
Kim
,
S.
,
2009
, “
Design and Fabrication of Multi-Material Structures for Bioinspired Robots
,”
Phil. Trans. R. Soc. A
,
367
(
1894
), pp.
1799
1813
.10.1098/rsta.2009.0013
12.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2011
, “
Multi-Material Compliant Mechanisms for Mobile Millirobots
,”
IEEE International Conference on Robotics and Automation
, pp.
3169
3174
.
13.
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R.
,
2008
, “
Microrobot Design Using Fiber Reinforced Composites
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052304
.10.1115/1.2885509
14.
Rajkowski
,
J.
,
2010
, “
Rapid Polymer Prototyping for Low Cost and Robust Microrobots Master Thesis
,” Ph.D. thesis, University of Maryland, College Park, MD.
15.
Gallego
,
J. A.
, and
Herder
,
J.
,
2009
, “
Synthesis Methods in Compliant Mechanisms: An Overview
,”
ASME International Design and Engineering Technical Conference
, pp.
193
214
.
16.
Berglund
,
M. D.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2000
, “
Design Rules for Selecting and Designing Compliant Mechanisms for Rigid-Body Replacement Synthesis
,”
ASME International Design and Engineering Technical Conference
, pp.
233
242
.
17.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.10.1115/1.2919359
18.
Yong
,
Y. K.
,
Lu
,
T. F.
, and
Handley
,
D. C.
,
2008
, “
Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations
,”
Precis. Eng.
,
32
(
2
), pp.
63
70
.10.1016/j.precisioneng.2007.05.002
19.
Moon
,
Y.
,
Trease
,
B. P.
, and
Kota
,
S.
,
2002
, “
Design of Large-Displacement Compliant Joints
,”
ASME
Paper No. DETC2002/MECH-34207.10.1115/DETC2002/MECH-34207
20.
Bruyas
,
A.
,
Geiskopf
,
F.
, and
Renaud
,
P.
,
2014
, “
Towards Statically Balanced Compliant Joints Using Multimaterial 3D Printing
,”
ASME
Paper No. DETC2014-34532.10.1115/DETC2014-34532
21.
Berselli
,
G.
,
Guerra
,
A.
,
Vassura
,
G.
, and
Andrisano
,
A. O.
,
2014
, “
An Engineering Method for Comparing Selectively Compliant Joints in Robotic Structures
,”
IEEE/ASME Trans. Mechatronics
,
19
(
6
), pp.
1882
1895
.10.1109/TMECH.2014.2315508
22.
Boyce
,
M. C.
, and
Arruda
,
E. M.
,
2000
, “
Constitutive Models of Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
,
73
(
3
), pp.
504
523
.10.5254/1.3547602
23.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley-IEEE
,
New York
.
24.
Montgomery
,
D. C.
,
2008
,
Design and Analysis of Experiments
,
7th ed.
,
Wiley
,
New York
.
25.
Piegl
,
L.
, and
Tiller
,
W.
,
1995
,
Curve and Surface Basics
,
The NURBS Book
,
Springer-Verlag, New York
.
You do not currently have access to this content.