This paper presents a synthesis method for the open path generation of a four-bar mechanism using the Haar wavelet. The synthesis method utilizes the wavelet transform and normalization to extract the wavelet output feature parameters (WOFP) of the open path. Analysis of the WOFP reveals a particular characteristic: for the same four-bar mechanism, not only do variations of the mechanism origin and angles and the proportional scaling of the linkage lengths have no influence on the details of the WOFP but the same holds true for the position of the point that generates the coupler curve. Based on this finding, a numerical atlas database comprises 192,596 groups of basic dimensional types was established and a method of matching recognition was proposed as well. According to the internal relationship of the wavelet characteristic dimension parameters (WCDP), the actual mechanism parameter values and position parameters of an objective four-bar mechanism can be calculated. Four examples are presented to verify the accuracy and practicality of the proposed theory.

References

References
1.
Norton
,
R. L.
,
1992
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
.
McGraw-Hill
,
New York
.
2.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
,
1967
, “
Synthesis of Plane Linkage With Use of the Displacement Matrix
,”
ASME J. Eng. Ind.
,
89
(
2
), pp.
206
214
.10.1115/1.3610029
3.
Tong
,
S. H.
, and
Chiang
,
C. H.
,
1992
, “
Syntheses of Planar and Spherical Four-Bar Path Generators by the Pole Method
,”
Mech. Mach. Theory
,
27
(
2
), pp.
143
155
.10.1016/0094-114X(92)90004-2
4.
Ma
,
O.
, and
Angeles
,
J.
,
1988
, “
Performance Evaluation of Path-Generating Planar, Spherical and Spatial Four-Bar Linkages
,”
Mech. Mach. Theory
,
23
(
7
), pp.
257
268
.10.1016/0094-114X(88)90017-1
5.
Cabrera
,
J. A.
,
Simon
,
A.
, and
Prado
,
M.
,
2002
, “
Optimal Synthesis of Mechanisms With Genetic Algorithms
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1165
1177
.10.1016/S0094-114X(02)00051-4
6.
Sanchez Marin
,
F. T.
, and
Gonzalez
,
A. P.
,
2004
, “
Open-Path Synthesis of Linkages Through Geometrical Adaptation
,”
Mech. Mach. Theory
,
33
(
9
), pp.
943
955
.10.1016/j.mechmachtheory.2004.04.002
7.
Smaili
,
A.
, and
Diab
,
N.
,
2007
, “
A New Approach to Shape Optimization for Closed Path Synthesis of Planar Mechanisms
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
941
948
.10.1115/1.2753164
8.
Hrones
,
J. A.
, and
Nelson
,
G. L.
,
1951
,
Analysis of the Four-Bar Linkage
,
MIT Press and Wiley
,
New York
.
9.
Hoeltzel
,
D. A.
, and
Chieng
,
W. H.
,
1990
, “
Pattern Matching Synthesis as an Automated Approach to Mechanism Design
,”
ASME J. Mech. Des.
,
112
(
6
), pp.
190
199
.10.1115/1.2912592
10.
Buskiewicz
,
J.
,
Starosta
,
R.
, and
Walczak
,
T.
,
2009
, “
On the Application of the Curve Curvature in Path Synthesis
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1223
1239
.10.1016/j.mechmachtheory.2008.08.001
11.
Buskiewicz
,
J.
,
2010
, “
Use of Shape Invariants in Optimal Synthesis of Geared Five-Bar Linkage
,”
Mech. Mach. Theory
,
45
(
2
), pp.
273
290
.10.1016/j.mechmachtheory.2009.09.004
12.
Watanabe
,
K.
,
1992
, “
Application of Natural Equations to Synthesis of Curve Generating Mechanisms
,”
Mech. Mach. Theory
,
27
(
3
), pp.
261
273
.10.1016/0094-114X(92)90016-B
13.
Zhang
,
C.
,
Norton
,
P. E. R. L.
, and
Hammonds
,
T.
,
1984
, “
Optimization of Parameters for Specified Path Generation Using an Atlas of Coupler Curves of Geared Five-Bar Linkages
,”
Mech. Mach. Theory
,
19
(
6
), pp.
459
466
.10.1016/0094-114X(84)90052-1
14.
Freudenstein
,
F.
,
1959
, “
Harmonic Analysis of Crank-and-Rocker Mechanisms With Application
,”
ASME J. Mech. Des.
,
26
(
1
), pp.
673
675
.
15.
Fanhang
,
K.
,
Midha
,
A.
, and
Bajaj
,
A.
,
1988
, “
Synthesis of Harmonic Motion Generating Linkages—Part II: Path and Motion Generation
,”
ASME J. Mech. Des.
,
110
(
1
), pp.
22
27
.10.1115/1.3258899
16.
McGarva
,
J.
,
1994
, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
,
29
(
2
), pp.
223
235
.10.1016/0094-114X(94)90032-9
17.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Method
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
.10.1115/1.2826396
18.
Yu
,
H. Y.
,
Tang
,
D. W.
, and
Wang
,
Z. X.
,
2007
, “
Study on a New Computer Path Synthesis Method of a Four-Bar Linkage
,”
Mech. Mach. Theory
,
42
(
4
), pp.
383
392
.10.1016/j.mechmachtheory.2006.05.003
19.
Mullineux
,
G.
,
2011
, “
Atlas of Spherical Four-Bar Mechanisms
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1811
1823
.10.1016/j.mechmachtheory.2011.06.001
20.
Chu
,
J. K.
, and
Sun
,
J. W.
,
2010
, “
Numerical Atlas Method for Path Generation of Spherical Four-Bar Mechanism
,”
Mech. Mach. Theory
,
45
(
6
), pp.
867
879
.10.1016/j.mechmachtheory.2009.12.005
21.
Wu
,
J.
,
Ge
,
Q. J.
,
Gao
,
F.
, and
Guo
,
W. Z.
,
2010
, “
On the Extension of a Fourier Descriptor Based Method for Four-Bar Linkage Synthesis for Generation of Open and Closed Paths
,”
ASME
Paper No. DETC2010-29028. 10.1115/DETC2010-29028
22.
Wu
,
J.
,
Ge
,
Q. J.
, and
Gao
,
F.
,
2009
, “
An Efficient Method for Synthesizing Crank–Rocker Mechanisms for Generating Low Harmonic Curves
,”
ASME
Paper No. DETC2009-87140. 10.1115/DETC2009-87140
23.
Yue
,
C.
,
Su
,
H. J.
, and
Ge
,
Q. J.
,
2012
, “
A Hybrid Computer-Aided Linkage Design System for Tracing Open and Closed Planar Curves
,”
Comput.-Aided Des.
,
44
(
11
), pp.
1141
1150
.10.1016/j.cad.2012.06.004
24.
Wu
,
X.
,
Chu
,
J. K.
, and
Cao
,
W. Q.
,
1998
, “
Analysis of Output Function of 4-Bar Linkages Using Wavelet Transform
,”
Mech. Sci. Technol.
,
17
(
2
), pp.
180
186
.
25.
Wang
,
C. Z.
, and
Ji
,
Y. B.
,
2004
, “
Research on Applying Wavelet Analysis to Path Synthesis for Coupler Curves of Planar Four-Bar Linkages
,”
Chin. J. Mech. Eng.
,
40
(
8
), pp.
34
39
.10.3901/JME.2004.08.034
26.
Galán-Marín
,
G.
,
Alonso
,
F. J.
, and
Del Castillo
,
J. M.
,
2009
, “
Shape Optimization for Path Synthesis of Crank–Rocker Mechanisms Using a Wavelet-Based Neural Network
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1132
1143
.10.1016/j.mechmachtheory.2008.09.006
27.
Daubechies
,
L.
,
2001
,
Ten Lectures on Wavelet
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
28.
Li
,
X. Y.
,
Zhao
,
P.
, and
Ge
,
Q. J.
,
2012
, “
A Fourier Descriptor Based Approach to Design Space Decomposition for Planar Motion Approximation
,”
ASME
Paper No. DETC2012-71264. 10.1115/DETC2012-71264
29.
Wu
,
J.
,
Wang
,
J. S.
,
Wang
,
L. P.
, and
Li
,
T. M.
,
2009
, “
Dynamics and Control of a Planar 3-DOF Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
4
), pp.
835
849
.10.1016/j.mechmachtheory.2008.04.002
30.
Wu
,
J.
,
Chen
,
X. M.
,
Li
,
T. M.
, and
Wang
,
L. P.
,
2013
, “
Optimal Design of a 2-DOF Parallel Manipulator With Actuation Redundancy Considering Kinematics and Natural Frequency
,”
Rob. Comput. Integr. Manuf.
,
29
(
1
), pp.
80
85
.10.1016/j.rcim.2012.07.005
31.
Wu
,
J.
,
Li
,
T. M.
,
Wang
,
J. S.
, and
Wang
,
L. P.
,
2013
, “
Performance Analysis and Comparison of Planar 3-DOF Parallel Manipulators With One and Two Additional Branches
,”
J. Intell. Rob. Syst.
,
72
(
1
), pp.
73
82
.10.1007/s10846-013-9824-8
You do not currently have access to this content.