Unified modeling for the kinematics analysis of a parallel hip joint manipulator (PHJM) is proposed, and structural parameters of the PHJM are optimized based on the unified model for obtaining low-velocity driving performance. Based on the finite element theory, a unified model for kinematics analysis is established, and the Monte Carlo method is subsequently proposed to solve the workspace for the PHJM. To optimize the workspace, a 6 surface-14 point (6 S-14 P) method is proposed to judge whether the workspace includes the task space. The structural parameters are further optimized to obtain low-velocity driving performance, and the motion performances of the PHJM with the optimal parameter are numerically simulated. The velocity simulation results demonstrate that the maximum relative velocity of the PHJM with the optimal parameter decreases by 23.2%. The unified kinematics analysis and low-velocity driving optimization effectively improve the performance for the PHJM and enrich the optimization theory for parallel manipulators with high velocities and given tasks.

References

References
1.
Özgür
,
E.
,
Nicolas
,
A.
, and
Philippe
,
M.
,
2013
, “
Linear Dynamic Modeling of Parallel Kinematic Manipulators From Observable Kinematic Elements
,”
Mech. Mach. Theory
,
69
(
11
), pp.
73
89
.10.1016/j.mechmachtheory.2013.05.002
2.
Lu
,
Y.
, and
Hu
,
B.
,
2007
, “
Analyzing Kinematics and Solving Active/Constrained Forces of a 3SPU + UPR Parallel Manipulator
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1298
1313
.10.1016/j.mechmachtheory.2006.11.002
3.
Zhang
,
D.
, and
Gao
,
Z.
,
2012
, “
Forward kinematics, Performance Analysis, and Multi-Objective Optimization of a Bio-Inspired Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
28
(
4
), pp.
484
492
.10.1016/j.rcim.2012.01.003
4.
Abbasnejad
,
G.
,
Daniali
,
H. M.
, and
Fathi
,
A.
,
2012
, “
Closed Form Solution for Direct Kinematics of a 4PUS + 1PS Parallel Manipulator
,”
Sci. Iran.
,
19
(
2
), pp.
320
326
.10.1016/j.scient.2012.02.015
5.
Cheng
,
G.
,
Yu
,
J. L.
, and
Gu
,
W.
,
2012
, “
Kinematic Analysis of 3SPS + 1PS Bionic Parallel Test Platform for Hip Joint Manipulator Based on Unit Quaternion
,”
Rob. Comput. Integr. Manuf.
,
28
(
2
), pp.
257
264
.10.1016/j.rcim.2011.09.007
6.
Gan
,
D. M.
,
Liao
,
Q. Z.
,
Dai
,
J. S.
, and
Wei
,
S. M.
,
2010
, “
Design and Kinematics Analysis of a New 3CCC Parallel Mechanism
,”
Robotica
,
28
(
7
), pp.
1065
1072
.10.1017/S0263574709990555
7.
Jaime
,
G.
,
Raúl
,
L.
,
José
,
M. R.
, and
Gürsel
,
A.
,
2011
, “
The Kinematics of Modular Spatial Hyper-Redundant Manipulators Formed From RPS-Type Limbs
,”
Rob. Auton. Syst.
,
59
(
1
), pp.
12
21
.10.1016/j.robot.2010.09.005
8.
Javad
,
E.
, and
Alireza
,
A. T.
,
2010
, “
A Novel Approach for Forward Position Analysis of a Double-Triangle Spherical Parallel Manipulator
,”
Eur. J. Mech.-A/Solids
,
29
(
3
), pp.
348
355
.10.1016/j.euromechsol.2009.12.001
9.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
,
2001
, “
Closed-Form Displacement and Coupler Curve Analysis of Planar Multi-Loop Mechanisms Using Gröbner Bases
,”
Mech. Mach. Theory
,
36
(
2
), pp.
273
298
.10.1016/S0094-114X(00)00043-4
10.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(1), pp.
199
206
.10.1115/1.2121740
11.
Gosselin
,
C. M.
,
1990
, “
Determination of the Workspace of 6-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
331
336
.10.1115/1.2912612
12.
Mazen
,
Z.
,
Philippe
,
W.
, and
Damien
,
C.
,
2006
, “
An Exhaustive Study of the Workspace Topologies of all 3R Orthogonal Manipulators With Geometric Simplifications
,”
Mech. Mach. Theory
,
41
(
8
), pp.
971
986
.10.1016/j.mechmachtheory.2006.03.013
13.
Jin
,
Y.
,
Chen
,
I. M.
, and
Yang
,
G. L.
,
2011
, “
Workspace Evaluation of Manipulators Through Finite-Partition of SE(3)
,”
Rob. Comput. Integr. Manuf.
,
27
(
4
), pp.
850
859
.10.1016/j.rcim.2011.01.006
14.
Tsai
,
K. Y.
,
Lo
,
I. T.
, and
Lin
,
P. J.
,
2014
, “
Compatible Reachable Workspaces of Symmetrical Stewart-Gough Parallel Manipulators
,”
Mech. Mach. Theory
,
77
(
7
), pp.
111
121
.10.1016/j.mechmachtheory.2014.02.010
15.
Zhao
,
J. S.
,
Chen
,
M.
,
Zhou
,
K.
,
Dong
,
J. X.
, and
Feng
,
Z. J.
,
2006
, “
Workspace of Parallel Manipulators With Symmetric Identical Kinematic Chains
,”
Mech. Mach. Theory
,
41
(
6
), pp.
632
645
.10.1016/j.mechmachtheory.2005.09.007
16.
Rezaei
,
A.
,
Akbarzadeh
,
A.
,
Nia
,
P. M.
, and
Akbarzadeh
,
T. M.
,
2013
, “
Position, Jacobian and Workspace Analysis of a 3-PSP Spatial Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
158
173
.10.1016/j.rcim.2012.11.009
17.
Panda
,
S.
,
Mishra
,
D.
, and
Biswal
,
B. B.
,
2013
, “
Revolute Manipulator Workspace Optimization: A Comparative Study
,”
Appl. Soft Comput.
,
13
(
2
), pp.
899
910
.10.1016/j.asoc.2012.09.009
18.
Serdar
,
K.
,
2009
, “
A Dexterity Comparison for 3-DOF Planar Parallel Manipulators With Two Kinematic Chains Using Genetic Algorithms
,”
Mechatronics
,
19
(
6
), pp.
868
877
.10.1016/j.mechatronics.2009.04.011
19.
Metin
,
T.
, and
Serdar
,
K.
,
2013
, “
Dexterous Workspace Optimization of an Asymmetric Six-Degree of Freedom Stewart–Gough Platform Type Manipulator
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1516
1528
.10.1016/j.robot.2013.07.004
20.
Stamper
,
R. E.
,
Tsai
,
L. W.
, and
Walsh
,
G. C.
,
1997
, “
Optimization of a Three DOF Translational Platform for Well-Conditioned Workspace
,”
IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3250
3255
.
You do not currently have access to this content.