Scientific evaluation of prototyping practices is an emerging field in design research. Prototyping is critical to the success of product development efforts, and yet its implementation in practice is often guided by ad hoc experience. To address this need, we seek to advance the study and development of prototyping principles, techniques, and tools. A method to repeatedly enhance the outcome of prototyping efforts is reported in this paper. The research methodology to develop this method is as follows: (1) systematically identify practices that improve prototyping; (2) synthesize these practices to form a guiding method for designers; and (3) validate that the proposed method encourages best practices and improves performance. Prototyping practices are represented as six key heuristics to guide a designer in planning: how many iterations to pursue, how many unique design concepts to explore in parallel, as well as the use of scaled prototypes, isolated subsystem prototypes, relaxed requirements, and virtual prototypes. The method is correlated, through experimental investigation, with increased application of these best practices and improved design performance outcomes. These observations hold across various design problems studied. This method is novel in providing a systematic approach to prototyping.

References

References
1.
Badri
,
M.
,
Mortagy
,
A.
,
Davis
,
D.
, and
Davis
,
D.
,
1997
, “
Effective Analysis and Planning of R&D Stages: A Simulation Approach
,”
Int. J. Project Manage.
,
15
(
6
), pp.
351
358
.10.1016/S0263-7863(97)00003-3
2.
Thomke
,
S. H.
,
1998
, “
Managing Experimentation in the Design of New Products
,”
Manage. Sci.
,
44
(
6
), pp.
743
762
.10.1287/mnsc.44.6.743
3.
Riek
,
R. F.
,
2001
, “
From Experience: Capturing Hard-Won NPD Lessons in Checklists
,”
J. Prod. Innovation Manage.
,
18
(
5
), pp.
301
313
.10.1016/S0737-6782(01)00100-X
4.
Moe
,
R. E.
,
Jensen
,
D. D.
, and
Wood
,
K. L.
,
2004
, “
Prototype Partitioning Based on Requirement Flexibility
,”
ASME
Paper No. DETC2004-57221.10.1115/DETC2004-57221
5.
Christie
,
E.
,
Jensen
,
D. D.
,
Buckley
,
R.
,
Menefee
,
D.
,
Ziegler
,
K.
,
Wood
,
K. L.
, and
Crawford
,
R.
,
2012
, “
Prototyping Strategies: Literature Review and Identification of Critical Variables
,”
American Society for Engineering Education Conference 2012
,
San Antonio
.
6.
Otto
,
K.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River
.
7.
Krishnan
,
V.
, and
Ulrich
,
K. T.
,
2001
, “
Product Development Decisions: A Review of the Literature
,”
Manage. Sci.
,
47
(
1
), pp.
1
21
.10.1287/mnsc.47.1.1.10668
8.
Drezner
,
J. A.
, and
Huang
,
M.
,
2009
,
On Prototyping: Lessons from RAND Research
,
RAND Corporation
,
Santa Monica
.
9.
Viswanathan
,
V.
,
2012
, “
Cognitive Effects of Physical Models in Engineering Idea Generation
,” Ph.D. thesis,
Texas A&M University
, College Station.
10.
Yang
,
M. C.
,
2005
, “
A Study of Prototypes, Design Activity, and Design Outcome
,”
Des. Stud.
,
26
(
6
), pp.
649
669
.10.1016/j.destud.2005.04.005
11.
Jang
,
J.
, and
Schunn
,
C. D.
,
2012
, “
Physical Design Tools Support and Hinder Innovative Engineering Design
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041001
.10.1115/1.4005651
12.
Häggman
,
A.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2013
, “
The Influence of Timing in Exploratory Prototyping and Other Activities in Design Projects
,”
ASME
Paper No. DETC2013-12700.10.1115/DETC2013-12700
13.
Viswanathan
,
V. K.
, and
Linsey
,
J.
,
2011
, “
Design Fixation in Physical Modeling: An Investigation on the Role of Sunk Cost
,”
ASME
Paper No. DETC2011-47862.10.1115/DETC2011-47862
14.
Schunn
,
C.
,
Cagan
,
J.
,
Paulus
,
P.
, and
Wood
,
K. L.
,
2007
, “
NSF Workshop in Engineering and Science: The Scientific Basis of Individual and Team Innovation and Discovery, NSF 07-25
,”
National Science Foundation
, www.nsf.gov/pubs/2007/nsf0725/nsf0725.pdf
15.
Youmans
,
R. J.
,
2011
, “
The Effects of Physical Prototyping and Group Work on the Reduction of Design Fixation
,”
Des. Stud.
,
32
(
2
), pp.
115
138
.10.1016/j.destud.2010.08.001
16.
Christensen
,
B.
, and
Schunn
,
C.
,
2007
, “
The Relationship of Analogical Distance to Analogical Function and Preinventive Structure: The Case of Engineering Design
,”
Mem. Cognit.
,
35
(
1
), pp.
29
38
.10.3758/BF03195939
17.
Camburn
,
B. A.
,
Dunlap
,
B.
,
Viswanathan
,
V.
,
Linsey
,
J.
,
Jensen
,
D. D.
,
Crawford
,
R.
,
Otto
,
K.
, and
Wood
,
K. L.
,
2013
, “
Connecting Design Problem Characteristics to Prototyping Choices to Form a Prototyping Strategy
,”
ASEE Annual Conference 2013
,
Atlanta
.
18.
Camburn
,
B. A.
,
Dunlap
,
B.
,
Kuhr
,
R.
,
Viswanathan
,
V.
,
Linsey
,
J.
,
Jensen
,
D. D.
,
Crawford
,
R.
,
Otto
,
K.
, and
Wood
,
K. L.
,
2013
, “
Methods for Prototyping Strategies in Conceptual Phases of Design: Framework and Experimental Assessment
,”
ASME
Paper No. DETC2013-13072.10.1115/DETC2013-13072
19.
Hammon
,
C. L.
,
Green
,
M. G.
,
Dunlap
,
B. U.
,
Camburn
,
B. A.
,
Crawford
,
R.
, and
Jensen
,
D.
,
2014
, “
Virtual or Physical Prototypes? Development and Testing of a Prototyping Planning Tool
,”
ASEE Annual Conference 2014
, p.
9025
.
20.
Dunlap
,
B. U.
,
Hammon
,
C. L.
,
Camburn
,
B. A.
,
Crawford
,
R.
,
Jensen
,
D.
,
Green
,
M. G.
,
Otto
,
K.
, and
Wood
,
K. L.
,
2014
, “
Heuristics-Based Prototyping Strategy Formation: Development and Testing of a New Prototyping Planning Tool
,”
ASME IMECE 2014
,
Montreal
.
21.
Glegg
,
G. L.
,
1981
,
The Development of Design
,
Cambridge University
,
London
.10.1017/CBO9780511760037
22.
Dow
,
S. P.
,
Heddleston
,
K.
, and
Klemmer
,
S. R.
,
2011
, “
The Efficacy of Prototyping Under Time Constraints
,”
Design Thinking: Understand—Improve—Apply, Understanding Innovation
,
C.
Meinel
,
L.
Leifer
, and
H.
Plattner
, eds.,
Springer-Verlag
,
Berlin
, pp.
111
128
.10.1007/978-3-642-13757-0_7
23.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2000
,
Product Design and Development
,
McGraw-Hill
,
New York
.
24.
Thomke
,
S. H.
,
2003
,
Experimentation Matters: Unlocking the Potential of New Technologies for Innovation
,
Harvard Business
,
Boston
.
25.
Dow
,
S. P.
,
Glassco
,
A.
,
Kass
,
J.
,
Schwarz
,
M.
,
Schwartz
,
D. L.
, and
Klemmer
,
S. R.
,
2010
, “
Parallel Prototyping Leads to Better Design Results, More Divergence, and Increased Self-Efficacy
,”
ACM Trans. Comput.-Hum. Interact. (TOCHI)
,
17
(
4
), p.
18
.10.1145/1879831.1879836
26.
Neeley
,
W. L.
,
Lim
,
K.
,
Zhu
,
A.
, and
Yang
,
M. C.
,
2013
, “
Building Fast to Think Faster: Exploiting Rapid Prototyping to Accelerate Ideation During Early Stage Design
,”
ASME
Paper No. DETC2013-12635.10.1115/DETC2013-12635
27.
Dahan
,
E.
, and
Mendelson
,
H.
,
2001
, “
An Extreme-Value Model of Concept Testing
,”
Manage. Sci.
,
47
(
1
), pp.
102
116
.10.1287/mnsc.47.1.102.10666
28.
Cho
,
U.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
1998
, “
On-Line Functional Testing With Rapid Prototypes: A Novel Empirical Similarity Method
,”
Int. Rapid Prototyping J.
,
4
(
3
), pp.
128
138
.10.1108/13552549810223000
29.
Dutson
,
A. J.
,
Wood
,
K. L.
,
Beaman
,
J. J.
,
Crawford
,
R. H.
, and
Bourell
,
D. L.
,
2003
, “
Application of Similitude Techniques to Functional Testing of Rapid Prototypes
,”
Rapid Prototyping J.
,
9
(
1
), pp.
6
13
.10.1108/13552540310455593
30.
Cho
,
U.
,
Dutson
,
A.
,
Wood
,
K. L.
, and
Crawford
,
R.
,
2005
, “
An Advanced Method to Correlate Scale Models With Distorted Configurations
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
78
85
.10.1115/1.1825044
31.
Thomke
,
S. H.
, and
Bell
,
D. E.
,
2001
, “
Sequential Testing in Product Development
,”
Manage. Sci.
,
47
(
2
), pp.
308
323
.10.1287/mnsc.47.2.308.9838
32.
Clin
,
J.
,
Aubin
,
C.
, and
Labelle
,
H.
,
2007
, “
Virtual Prototyping of a Brace Design for the Correction of Scoliotic Deformities
,”
Med. Biol. Eng. Comput.
,
45
(
5
), pp.
467
473
.10.1007/s11517-007-0171-4
33.
Sefelin
,
R.
,
Tscheligi
,
M.
, and
Giller
,
V.
,
2003
, “
Paper Prototyping-What is it Good for?: A Comparison of Paper-and Computer-Based Low-Fidelity Prototyping
,”
CHI'03
Extended Abstracts on Human Factors in Computing Systems, pp.
778
779
.10.1145/765891.765986
34.
Engineering Models Ease and Speed Prototyping, NASA2008.
35.
Wang
,
G. G.
,
2002
, “
Definition and Review of Virtual Prototyping
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
3
), pp.
232
236
.10.1115/1.1526508
36.
Wen
,
J. H.
,
2008
, “
Virtual Prototyping in Redesign and Durability Test Assessment
,”
SAE
Technical Report No. 2008-01-0862.10.4271/2008-01-0862
37.
Anderl
,
R.
,
Mecke
,
K.
, and
Klug
,
L.
,
2007
, “
Advanced Prototyping With Parametric Prototypes
,”
Digital Enterprise Technology
,
Springer
,
New York
, pp.
503
510
.10.1007/978-0-387-49864-5_59
38.
Zhu
,
Y.
, and
Ahmad
,
I.
,
2008
,
Developing a Realistic-Prototyping Road User Cost Evaluation Tool for FDOT
, Florida Department of Transportation Construction Office, Department of Construction Management, College of Engineering and Computing,
Florida International University
,
Tallahassee
.
You do not currently have access to this content.