Today, it is difficult to integrate the use phase optimization of consumer products into eco-design methodologies. Current eco-design approaches are in fact mainly focused on improving the technological performance of products while it has been proven that users behavior plays an important role in the overall environmental performances of products. This paper deals with the need to address the notion of user experience and behavior in the design process of today's low-complexity consumer products in order to improve their environmental performance. The research protocol presented in this paper is a new eco-design approach in six steps that can be used by designers to support eco-design decisions and integrate user behavior parameters into design activities. The first step consists in the identification of critical environmental aspects in use and usage drifts potential of the product. Steps two, three, and four support designers in the analysis of the use phase for the selection of efficient design for sustainable behavior (DfSB) strategies to be implemented on the product. Finally, steps five and six aim to test the selected strategies with product-in-use observations. Life cycle assessment (LCA) approach is used for the evaluation of the environmental benefits of the strategies. To illustrate this work, a case study of a coffee maker is described together with the eco-design solutions chosen for this product. The solutions reflect strategies targeting DfSB.

References

References
1.
Yannou
,
B.
,
Jankovic
,
M.
,
Leroy
,
Y.
, and
Okudan Kremer
,
G. E.
,
2013
, “
Observations From Radical Innovation Projects Considering the Company Context
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021005
.10.1115/1.4023150
2.
Tukker
,
A.
, and
Jansen
,
B.
,
2006
, “
Environmental Impacts of Products: A Detailed Review of Studies
,”
J. Ind. Ecol.
,
10
(
3
), pp.
159
182
.10.1162/jiec.2006.10.3.159
3.
Brundtland
,
G. H.
,
1987
,
Our Common Future
,
Oxford University Press
, Oxford, UK.
4.
Cor
,
E.
,
Domingo
,
L.
,
Brissaud
,
D.
, and
Zwolinski
,
P.
,
2014
, “
A Protocol to Perform Usage Oriented Ecodesign
,”
CIRP Ann. Manuf. Technol.
,
63
(
1
), pp.
169
172
.10.1016/j.cirp.2014.03.096
5.
Helu
,
M.
,
Vijayaraghavan
,
A.
, and
Dornfeld
,
D.
,
2011
, “
Evaluating the Relationship Between Use Phase Environmental Impacts and Manufacturing Process Precision
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
49
52
.10.1016/j.cirp.2011.03.020
6.
Guinée
,
J.
,
Heijungs
,
R.
,
De Koning
,
A.
,
Van
,
L.
,
Geerken
,
T.
,
Van Holderbeke
,
M.
, and
Delgado
,
L.
,
2006
, “
Environmental Impact of Products (EIPRO) Analysis of the Life Cycle Environmental Impacts Related to the Final Consumption of the EU25
,” Report No. EUR22284EN.
7.
Plouffe
,
S.
,
Lanoie
,
P.
,
Berneman
,
C.
, and
Vernier
,
M.-F.
,
2011
, “
Economic Benefits Tied to Ecodesign
,”
J. Cleaner Prod.
,
19
(
6–7
), pp.
573
579
.10.1016/j.jclepro.2010.12.003
8.
Sauer
,
J.
,
Wiese
,
B. S.
, and
Rüttinger
,
B.
,
2003
, “
Designing Low-Complexity Electrical Consumer Products for Ecological Use
,”
Appl. Ergon.
,
34
(
6
), pp.
521
531
.10.1016/j.apergo.2003.07.001
9.
ISO, X.,
2003
,
XP ISO/TR 14062: Environmental Management—Integrating Environmental Aspects into Product Design and Development
, Geneva, Switzerland.
10.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.10.1115/1.4002308
11.
Bohm
,
M. R.
,
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2010
, “
Integrating Life Cycle Assessment Into the Conceptual Phase of Design Using a Design Repository
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091005
.10.1115/1.4002152
12.
Serna-Mansoux
,
L.
,
Domingo
,
L.
,
Millet
,
D.
, and
Brissaud
,
D.
,
2014
, “
A Tool for Detailed Analysis and Ecological Assessment of the Use Phase
,”
Procedia CIRP
,
15
, pp.
502
507
.10.1016/j.procir.2014.06.059
13.
Sauer
,
J.
,
Wiese
,
B. S.
,
Ruttinger
,
B.
,
2002
, “
The Utilisation Phase as a Critical Element in Ecological Design
,”
Mechanical Life Cycle Handbook: Good Environmental Design and Manufacturing
,
M. S.
Hundal
, ed., New York.
14.
Seow
,
Y.
, and
Rahimifard
,
S.
,
2011
, “
A Framework for Modelling Energy Consumption Within Manufacturing Systems
,”
CIRP J. Manuf. Sci. Technol.
,
4
(
3
), pp.
258
264
.10.1016/j.cirpj.2011.03.007
15.
Behdad
,
S.
,
Kwak
,
M.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Simultaneous Selective Disassembly and End-Of-Life Decision Making for Multiple Products that Share Disassembly Operations
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041002
.10.1115/1.4001207
16.
Serna-Mansoux
,
L.
,
Popoff
,
A.
, and
Millet
,
D.
,
2014
, “
A Simplified Model to Include Dynamic Product User Interaction in the Eco-Design Process
,”
J. Ind. Ecol.
,
18
(
4
), pp.
529
544
.10.1111/jiec.12160
17.
Huang
,
H.
, and
Ameta
,
G.
,
2014
, “
A Novel Pattern for Energy Estimation Framework and Tools to Compute Energy Consumption in Product Life Cycle
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p.
011002
.10.1115/1.4025718
18.
European Commission
,
2010
, “
DIRECTIVE 2009/125/EC: Establishing a Framework for the Setting of Ecodesign Requirements for Energy-Related Products
, Luxemborg.
19.
Kuijer
,
L.
, and
De Jong
,
A.
,
2012
, “
Identifying Design Opportunities for Reduced Household Resource Consumption: Exploring Practices of Thermal Comfort
,”
J. Des. Res.
,
10
(
1
), pp.
67
85
. 10.1504/JDR.2012. 046140
20.
Srivastava
,
J.
, and
Shu
,
L. H.
,
2013
, “
Affordances and Product Design to Support Environmentally Conscious Behavior
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101006
.10.1115/1.4025288
21.
Lidman
,
K.
,
Renström
,
S.
, and
Karlsson
,
M.
,
2011
, “
The Green User. Design for Sustainable Behaviour
,”
Proceedings From the IASDR Conference 2011
, Diversity and Unity, Oct. 31–Nov. 1, Delft, pp.
1
12
.
22.
Ajzen
,
I.
,
1991
, “
The Theory of Planned Behavior
,”
Organ. Behav. Hum. Decis. Processes
,
50
(
2
), pp.
179
211
.10.1016/0749-5978(91)90020-T
23.
Abrahamse
,
W.
,
Steg
,
L.
,
Vlek
,
C.
, and
Rothengatter
,
T.
,
2005
, “
A Review of Intervention Studies Aimed at Household Energy Conservation
,”
J. Environ. Psychol.
,
25
(
3
), pp.
273
291
.10.1016/j.jenvp.2005.08.002
24.
Srivastava
,
J.
, and
Shu
,
L. H.
,
2013
, “
Encouraging Resource-Conscious Behavior Through Product Design: The Principle of Discretization
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061002
.10.1115/1.4024225
25.
Lilley
,
D.
,
2009
, “
Design for Sustainable Behaviour: Strategies and Perceptions
,”
Des. Stud.
,
30
(
6
), pp.
704
720
.10.1016/j.destud.2009.05.001
26.
Gustafsson
,
A.
, and
Gyllenswärd
,
M.
,
2005
, “
The Power-Aware Cord: Energy Awareness Through Ambient Information Display
,”
Proceedings of the CHI'05 Extended Abstracts on Human Factors in Computing Systems
, pp.
1423
1426
.
27.
Midden
,
C. J. H.
,
Meter
,
J. E.
,
Weenig
,
M. H.
, and
Zieverink
,
H. J. A.
,
1982
, “
Using Feedback, Reinforcement and Information to Reduce Energy Consumption in Households: A Field-Experiment
,”
J. Econ. Psychol.
,
3
(
1
), pp.
65
86
.10.1016/0167-4870(83)90058-2
28.
Wood
,
G.
, and
Newborough
,
M.
,
2003
, “
Dynamic Energy-Consumption Indicators for Domestic Appliances: Environment, Behaviour and Design
,”
Energy Build.
,
35
(
8
), pp.
821
841
.10.1016/S0378-7788(02)00241-4
29.
Withanage
,
C.
,
Ashok
,
R.
,
Hölttä-Otto
,
K.
, and
Otto
,
K.
,
2014
, “
Identifying and Categorizing Opportunities for Design for Sustainable User Behavior
,”
ASME
Paper No. V007T07A008. 10.1115/DETC2014 -34798
30.
Bhamra
,
T.
,
Lilley
,
D.
, and
Tang
,
T.
,
2011
, “
Design for Sustainable Behaviour: Using Products to Change Consumer Behaviour
,”
Des. J.
,
14
(
4
), pp.
427
445
.10.2752/175630611X13091688930453
31.
Wever
,
R.
,
van Kuijk
,
J.
, and
Boks
,
C.
,
2008
, “
User-Centred Design for Sustainable Behaviour
,”
Int. J. Sustainable Eng.
,
1
(
1
), pp.
9
20
.10.1080/19397030802166205
32.
Boks
,
C.
,
2012
, “
Design for Sustainable Behaviour Research Challenges
,”
Design for Innovative Value Towards a Sustainable Society
,
Springer
,
Amsterdam, The Netherlands
, pp.
328
333
.
33.
Hines
,
J. M.
,
Hungerford
,
H. R.
, and
Tomera
,
A. N.
,
1987
, “
Analysis and Synthesis of Research on Responsible Environmental Behavior: A Meta-Analysis
,”
J. Environ. Educ.
,
18
(
2
), pp.
1
8
.10.1080/00958964.1987.9943482
34.
Fishbein
,
M.
, and
Ajzen
,
I.
,
1975
,
Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research
,
Addison-Wesley
,
Boston, MA
.
35.
Maguire
,
M.
,
2001
, “
Methods to Support Human-Centred Design
,”
Int. J. Hum. Comput. Stud.
,”
55
(
4
), pp.
587
634
.10.1006/ijhc.2001.0503
36.
Strömberg
,
H.
,
Selvefors
,
A.
, and
Renström
,
S.
, “
Mapping Out the Design Opportunities: Pathways of Sustainable Behaviour
,” Int. J. Sustainable Eng. Available at: http://publications.lib.chalmers.se/publication/211918-mapping-out-the-design-opportunities-pathways-of-sustainable-behaviour
37.
Evans
,
S.
,
Burns
,
A.
, and
Barrett
,
R.
,
2002
,
Empathic Design Tutor
,
IERC, Cranfield University
,
Cranfield, UK
.
38.
Quantis Suisse,
2011
, “
Comparative Full Life Cycle Assessment of B2C Cup of Espresso Made Using a Packaging and Distribution System From Nespresso Espresso and Three Generic Products
,” Final Report No. 3.
39.
Wimmer
,
W.
, and
Züst
,
R.
,
2003
,
ECODESIGN Pilot: Product-Investigation Learning-and Optimization-Tool for Sustainable Product Development With CD-ROM
, Vol.
3
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
40.
European Commission (DG ENER),
2011
,
Preparatory Study for Eco-Design Requirements of EuPs—Lot 25: Non-Tertiary Coffee Machines
, Paris, France.
41.
Dunlap
,
R. E.
,
Van Liere
,
K. D.
,
Mertig
,
A. G.
, and
Jones
,
R. E.
,
2000
, “
New Trends in Measuring Environmental Attitudes: Measuring Endorsement of the New Ecological Paradigm: A Revised NEP Scale
,”
J. Soc. Issues
,
56
(
3
), pp.
425
442
.10.1111/0022-4537.00176
You do not currently have access to this content.