Occupants' behavior exerts a significant influence on the energy performance of residential buildings. Industrial energy simulation tools often account for occupants' as monolithic elements with standard averaged energy consumption profiles. Predictions yielded by these tools can thus deviate dramatically from reality. This paper proposes an activity-based model for forecasting energy and water consumption of households and discusses how such an occupant-focused model may integrate a user-focused design of residential buildings. A literature review is first presented followed by a brief recall of the proposed modeling methodology and a sample of simulation results. The possible integration of the proposed model into the design and energy management processes of residential buildings is then demonstrated through a number of use cases.

References

References
1.
Saidur
,
R.
,
Masjuki
,
H. H.
, and
Jamaluddin
,
M. Y.
,
2007
, “
An Application of Energy and Exergy Analysis in Residential Sector of Malaysia
,”
Energy Policy
,
35
(
2
), pp.
1050
1063
.10.1016/j.enpol.2006.02.006
2.
Masoso
,
O. T.
, and
Grobler
,
L. J.
,
2010
, “
The Dark Side of Occupants' Behaviour on Building Energy Use
,”
Energy Build.
,
42
(
2
), pp.
173
177
.10.1016/j.enbuild.2009.08.009
3.
Hoes
,
P.
,
Hensen
,
J.
,
Loomans
,
M.
,
De Vries
,
B.
, and
Bourgeois
,
D.
,
2009
, “
User Behavior in Whole Building Simulation
,”
Energy Build.
,
41
(
3
), pp.
295
302
.10.1016/j.enbuild.2008.09.008
4.
EPBD
,
2014
, “
Concerted Action Energy Performance of Buildings Directive
,” Accessed Sept. 13, 2014, http://www.epbd-ca.eu/
5.
Vierra
,
S.
,
2011
, “
Green Building Standards and Certification Systems | Whole Building Design Guide
,” Accessed Sept. 13, 2014, http://www.wbdg.org/resources/gbs.php
6.
CPE
,
2012
, “
Contrats de performance énergétique—Ministère du Développement durable
,” Accessed Feb. 10, 2014, http://www.developpement-durable.gouv.fr/Contrats-de-performance,28987.html
7.
Page
,
J.
,
Robinson
,
D.
,
Morel
,
N.
, and
Scartezzini
,
J. L.
,
2008
, “
A Generalised Stochastic Model for the Simulation of Occupant Presence
,”
Energy Build.
,
40
(
2
), pp.
83
98
.10.1016/j.enbuild.2007.01.018
8.
Yu
,
Z.
,
Fung
,
B. C. M.
,
Haghighat
,
F.
,
Yoshino
,
H.
, and
Morofsky
,
E.
,
2011
, “
A Systematic Procedure to Study the Influence of Occupant Behavior on Building Energy Consumption
,”
Energy Build.
,
43
(
6
), pp.
1409
1417
.10.1016/j.enbuild.2011.02.002
9.
Pachauri
,
S.
,
2004
, “
An Analysis of Cross-Sectional Variations in Total Household Energy Requirements in India Using Micro Survey Data
,”
Energy Policy
,
32
(
15
), pp.
1723
1735
.10.1016/S0301-4215(03)00162-9
10.
Fabi
,
V.
,
Andersen
,
R.
,
Corgnati
,
S.
, and
Olesen
,
B.
,
2012
, “
Occupants' Window Opening Behaviour: A Literature Review of Factors Influencing Occupant Behaviour and Models
,”
Build. Environ.
,
58
(
12
), pp.
188
198
.10.1016/j.buildenv.2012.07.009
11.
Swan
,
L. G.
, and
Ugursal
,
V. I.
,
2009
, “
Modeling of End-Use Energy Consumption in the Residential Sector: A Review of Modeling Techniques
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
1819
1835
.10.1016/j.rser.2008.09.033
12.
Clevenger
,
C. M.
, and
Haymaker
,
J.
,
2006
, “
The Impact of the Building Occupant on Energy Modeling Simulations
,”
Proceedings of the Joint International Conference on Computing and Decision Making in Civil and Building Engineering
, Montreal, Canada, June 14–16, pp.
1
10
.
13.
Seryak
,
J.
, and
Kissock
,
K.
,
2003
, “
Occupancy and Behavioral Affects on Residential Energy Use
,”
Proceedings of the Solar Conference
, Austin, TX, pp.
717
722
.
14.
Emery
,
A. F.
, and
Kippenhan
,
C. J.
,
2006
, “
A Long Term Study of Residential Home Heating Consumption and the Effect of Occupant Behavior on Homes in the Pacific Northwest Constructed According to Improved Thermal Standards
,”
Energy
,
31
(
5
), pp.
677
693
.10.1016/j.energy.2005.04.006
15.
Malavazos
,
C.
,
Tzovaras
,
D.
,
Kehagias
,
D.
, and
Ioannidis
,
D.
,
2011
, “
Energy and Behavioural Modelling and Simulation for EE-Buildings Design
,”
Proceedings of the CIB W78-W102 2011: International Conference
, Sophia Antipolis, France, Oct. 26–28, pp.
92
105
.
16.
Kashif
,
A.
,
Ploix
,
S.
,
Dugdale
,
J.
, and
Binh Le
,
X. H.
,
2013
, “
Simulating the Dynamics of Occupant Behaviour for Power Management in Residential Buildings
,”
Energy Build.
,
56
(
1
), pp.
85
93
.10.1016/j.enbuild.2012.09.042
17.
Bourgeois
,
D.
,
Reinhart
,
C.
, and
Macdonald
,
I.
,
2006
, “
Adding Advanced Behavioural Models in Whole Building Energy Simulation: A Study on the Total Energy Impact of Manual and Automated Lighting Control
,”
Energy Build.
,
38
(
7
), pp.
814
823
.10.1016/j.enbuild.2006.03.002
18.
Chiou
,
Y.-S.
,
2009
, “
Deriving U.S. Household Energy Consumption Profiles From American Time Use Survey Data a Bootstrap Approach
,”
Proceedings of the 11th International Building Performance Simulation Association Conference and Exhibition
, Glasgow, Scotland, July 27–30, pp.
151
158
.
19.
Zaraket
,
T.
,
2014
, “
Stochastic Activity-Based Approach of Occupant-Related Energy Consumption in Residential Buildings
,” Doctoral dissertation, Ecole Centrale Paris, Châtenay-Malabry, France.
20.
Ellegård
,
K.
, and
Palm
,
J.
,
2011
, “
Visualizing Energy Consumption Activities as a Tool for Making Everyday Life More Sustainable
,”
Appl. Energy
,
88
(
5
), pp.
1920
1926
.10.1016/j.apenergy.2010.11.019
21.
Pennavaire
,
C.
,
2010
, “
Comprehensive Modeling of Energy Use in Households. An Agent Based Case Study on Potential Behavioural and Technical Measures Towards an Energy Neutral Urban Environment
,” Master's thesis, Master of Science in Construction Management and Engineering, University of Technology, Eindhoven, The Netherlands.
22.
Kashif
,
A.
,
Ploix
,
S.
,
Dugdale
,
J.
, and
Le
,
X. H. B.
,
2011
, “
Agent Based Framework to Simulate Inhabitants' Behaviour in Domestic Settings for Energy Management
,”
Proceedings of the 3rd International Conference on Agents and Artificial Intelligence (ICAART 2011)
, Rome, Italy, Jan. 28–30, pp.
190
199
.
23.
Swan
,
L. G.
, and
Ugursal
,
V. I.
,
2009
, “
Modeling of End-Use Energy Consumption in the Residential Sector: A Review of Modeling Techniques
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
1819
1835
.10.1016/j.rser.2008.09.033
24.
Yao
,
R.
, and
Steemers
,
K.
,
2005
, “
A Method of Formulating Energy Load Profile for Domestic Buildings in the UK
,”
Energy Build.
,
37
(
6
), pp.
663
671
.10.1016/j.enbuild.2004.09.007
25.
Yun
,
G. Y.
, and
Steemers
,
K.
,
2011
, “
Behavioural, Physical and Socio-Economic Factors in Household Cooling Energy Consumption
,”
Appl. Energy
,
88
(
6
), pp.
2191
2200
.10.1016/j.apenergy.2011.01.010
26.
Paauw
,
J.
,
Roossien
,
B.
,
Aries
,
M. B. C.
, and
Santin
,
O. G.
,
2009
, “
Energy Pattern Generator; Understanding the Effect of User Behaviour on Energy Systems
,”
Proceedings of the 1st European Conference Energy Efficiency and Behaviour
, Maastricht, The Netherlands, Oct. 18–19, pp.
9
10
.
27.
Weber
,
C.
, and
Perrels
,
A.
,
2000
, “
Modelling Lifestyle Effects on Energy Demand and Related Emissions
,”
Energy Policy
,
28
(
8
), pp.
549
566
.10.1016/S0301-4215(00)00040-9
28.
Mansouri
,
I.
,
Newborough
,
M.
, and
Probert
,
D.
,
1996
, “
Energy Consumption in UK Households: Impact of Domestic Electrical Appliances
,”
Appl. Energy
,
54
(
3
), pp.
211
285
.10.1016/0306-2619(96)00001-3
29.
Lutzenhiser
,
L.
, and
Bender
,
S.
,
2008
, “
The ‘Average American’ Unmasked: Social Structure and Differences in Household Energy Use and Carbon Emissions
,”
Proceedings of the 2008 ACEEE Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy
, Washington, DC, pp.
191
204
.
30.
Guerin
,
D. A.
,
Yust
,
B. L.
, and
Coopet
,
J. G.
,
2000
, “
Occupant Predictors of Household Energy Behavior and Consumption Change as Found in Energy Studies Since 1975
,”
Fam. Consum. Sci. Res. J.
,
29
(
1
), pp.
48
80
.10.1177/1077727X00291003
31.
Nugroho
,
S. B.
,
Fujiwara
,
A.
,
Zhang
,
J.
,
Kanemoto
,
K.
,
Moersidik
,
S. S.
, and
Abbas
,
S.
,
2010
, “
Development of a Household Energy Consumption Model for Megacities in Asia
,”
The 16th Annual International Sustainable Development Research Conference
, Hong Kong, China, May 30–June 1.
32.
Yun
,
G. Y.
,
Tuohy
,
P.
, and
Steemers
,
K.
,
2009
, “
Thermal Performance of a Naturally Ventilated Building Using a Combined Algorithm of Probabilistic Occupant Behaviour and Deterministic Heat and Mass Balance Models
,”
Energy Build.
,
41
(
5
), pp.
489
499
.10.1016/j.enbuild.2008.11.013
33.
McLoughlin
,
F.
,
Duffy
,
A.
, and
Conlon
,
M.
,
2012
, “
Characterising Domestic Electricity Consumption Patterns by Dwelling and Occupant Socio-Economic Variables: An Irish Case Study
,”
Energy Build.
,
48
(
2
), pp.
240
248
.10.1016/j.enbuild.2012.01.037
34.
Yohanis
,
Y. G.
,
Mondol
,
J. D.
,
Wright
,
A.
, and
Norton
,
B.
,
2008
, “
Real-Life Energy Use in the UK: How Occupancy and Dwelling Characteristics Affect Domestic Electricity Use
,”
Energy Build.
,
40
(
6
), pp.
1053
1059
.10.1016/j.enbuild.2007.09.001
35.
Tanimoto
,
J.
,
Hagishima
,
A.
, and
Sagara
,
H.
,
2008
, “
Validation of Probabilistic Methodology for Generating Actual Inhabitants' Behavior Schedules for Accurate Prediction of Maximum Energy Requirements
,”
Energy Build.
,
40
(
3
), pp.
316
322
.10.1016/j.enbuild.2007.02.032
36.
Richardson
,
I.
,
Thomson
,
M.
,
Infield
,
D.
, and
Delahunty
,
A.
,
2009
, “
Domestic Lighting: A High-Resolution Energy Demand Model
,”
Energy Build.
,
41
(
7
), pp.
781
789
.10.1016/j.enbuild.2009.02.010
37.
Richardson
,
I.
,
Thomson
,
M.
,
Infield
,
D.
, and
Clifford
,
C.
,
2010
, “
Domestic Electricity Use: A High-Resolution Energy Demand Model
,”
Energy Build.
,
42
(
10
), pp.
1878
1887
.10.1016/j.enbuild.2010.05.023
38.
Widén
,
J.
, and
Wäckelgård
,
E.
,
2010
, “
A High-Resolution Stochastic Model of Domestic Activity Patterns and Electricity Demand
,”
Appl. Energy
,
87
(
6
), pp.
1880
1892
.10.1016/j.apenergy.2009.11.006
39.
Muratori
,
M.
,
2013
, “
A Highly Resolved Modeling Technique to Simulate Residential Power Demand
,”
Appl. Energy
,
107
(
7
), pp.
465
473
.10.1016/j.apenergy.2013.02.057
40.
Subbiah
,
R.
,
2013
, “
An Activity-Based Energy Demand Modeling Framework for Buildings: A Bottom-Up Approach
,” Master's thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
41.
Zaraket
,
T.
,
Yannou
,
B.
,
Leroy
,
Y.
,
Minel
,
S.
, and
Chapotot
,
E.
,
2013
, “
A Usage Model-Driven Approach for Forecasting Occupant-Related Energy Consumption in Residential Buildings
,”
Proceedings of CONFERE 2013
, Biarritz, France. Available at: http://www.lgi.ecp.fr/uploads/Intranet/2013-05-17_PresentationZaraket.pdf
42.
Zaraket
,
T.
,
Yannou
,
B.
,
Leroy
,
Y.
,
Minel
,
S.
, and
Chapotot
,
E.
,
2014
, “
A Stochastic Activity-Based Approach for Forecasting Occupant-Related Energy Consumption in Residential Buildings
,”
ASME
Paper No. DETC2014-35528.
43.
CPE
,
2014
, “
Le site des contrats de performance énergétique
,” Accessed Dec. 11, 2014, http://www.lecpe.fr/
44.
Lemoniteur
,
2011
, “
Energy Pass, nouvel outil de maîtrise des charges dans les bâtiments neufs
,” Accessed Jan. 19, 2014, http://www.lemoniteur.fr/145-logement/article/actualite/860961-energy-pass-nouvel-outil-de-maitrise-des-charges-dans-les-batiments-neufs
45.
Picon
,
L.
,
Yannou
,
B.
,
Zaraket
,
T.
,
Minel
,
S.
,
Bertoluci
,
G.
,
Cluzel
,
F.
, and
Farel
,
R.
,
2013
, “
Use-Phase Memory: A Tool for the Sustainable Construction and Renovation of Residential Buildings
,”
Autom. Constr.
,
36
(
12
), pp.
53
70
.10.1016/j.autcon.2013.08.003
You do not currently have access to this content.