In this paper, we propose a data-driven network analysis based approach to predict individual choice sets for customer choice modeling in engineering design. We apply data analytics to mine existing data of customer choice sets, which is then used to predict choice sets for individual customers in a new choice modeling scenario where choice set information is lacking. Product association network is constructed to identify product communities based on existing data of customer choice sets, where links between products reflect the proximity or similarity of two products in customers' perceptual space. To account for customer heterogeneity, customers are classified into clusters (segments) based on their profile attributes and for each cluster the product consideration frequency is computed. For predicting choice sets in a new choice modeling scenario, a probabilistic sampling approach is proposed to integrate product associations, customer segments, and the link strengths in the product association network. In case studies, we first implement the approach using an example with simulated choice set data. The quality of predicted choice sets is examined by assessing the estimation bias of the developed choice model. We then demonstrate the proposed approach using actual survey data of vehicle choice, illustrating the benefits of improving a choice model through choice set prediction and the potential of using such choice models to support engineering design decisions. This research also highlights the benefits and potentials of using network techniques for understanding customer preferences in product design.

References

References
1.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2013
, Decision-Based Design: Integrating Consumer Preferences Into Engineering Design,
Springer
,
London
10.1007/978-1-4471-4036-8.
2.
Kumar
,
D.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2009
, “
A Market-Driven Approach to Product Family Design
,”
Int. J. Prod. Res.
,
47
(
1
), pp.
71
104
.10.1080/00207540701393171
3.
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
, and
Koppelman
,
F. S.
,
2010
, “
Integrated Bayesian Hierarchical Choice Modeling to Capture Heterogeneous Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121010
.10.1115/1.4002972
4.
He
,
L.
,
Chen
,
W.
,
Hoyle
,
C.
, and
Yannou
,
B.
,
2012
, “
Choice Modeling for Usage Context-Based Design
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031007
.10.1115/1.4005860
5.
He
,
L.
,
Wang
,
M.
,
Chen
,
W.
, and
Conzelmann
,
G.
,
2014
, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles
,”
Transp. Res. Part D: Transp. Environ.
,
32
(
2014
), pp.
421
434
.10.1016/j.trd.2014.08.007
6.
Kim
,
H. M.
,
Kumar
,
D. K.
,
Chen
,
W.
, and
Papalambros
,
P. Y.
,
2006
, “
Target Exploration for Disconnected Feasible Regions in Enterprise-Driven Multilevel Product Design
,”
AIAA J.
,
44
(
1
), pp.
67
77
.10.2514/1.13908
7.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2005
, “
Linking Marketing and Engineering Product Design Decisions Via Analytical Target Cascading*
,”
J. Prod. Innovation Manage.
,
22
(
1
), pp.
42
62
.10.1111/j.0737-6782.2005.00102.x
8.
Shiau
,
C.-S. N.
, and
Michalek
,
J. J.
,
2009
, “
Should Designers Worry About Market Systems?
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011011
.10.1115/1.3013848
9.
Morrow
,
W. R.
,
Long
,
M.
, and
MacDonald
,
E. F.
,
2014
, “
Market-System Design Optimization With Consider-Then-Choose Models
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031003
.10.1115/1.4026094
10.
Resende
,
C. B.
,
Heckmann
,
C. G.
, and
Michalek
,
J. J.
,
2012
, “
Robust Design for Profit Maximization With Aversion to Downside Risk From Parametric Uncertainty in Consumer Choice Models
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100901
.10.1115/1.4007533
11.
Train
,
K. E.
,
2009
,
Discrete Choice Methods With Simulation
,
Cambridge University
.10.1017/CBO9780511805271
12.
Ben-Akiva
,
M. E.
, and
Lerman
,
S. R.
,
1985
,
Discrete Choice Analysis: Theory and Application to Travel Demand
,
MIT
,
Cambridge
.
13.
U.S. Department of Transportation, F. H. A.
,
2009
, “National Household Travel Survey,” http://nhts.ornl.gov
14.
Hauser
,
J. R.
, and
Wernerfelt
,
B.
,
1990
, “
An Evaluation Cost Model of Consideration Sets
,”
J. Consum. Res.
,
16
(
4
), pp.
393
408
.10.1086/209225
15.
Hauser
,
J. R.
,
Ding
,
M.
, and
Gaskin
,
S. P.
,
2009
, “
Non-Compensatory (and Compensatory) Models of Consideration-Set Decisions
,”
Sawtooth Software Conference
,
Sequim
.
16.
Nerella
,
S.
, and
Bhat
,
C. R.
,
2004
, “
Numerical Analysis of Effect of Sampling of Alternatives in Discrete Choice Models
,”
Transp. Res. Rec.: J. Transp. Res. Board
,
1894
(
1
), pp.
11
19
.10.3141/1894-02
17.
McFadden
,
D.
,
1978
,
Modelling the Choice of Residential Location
,
Institute of Transportation Studies
,
University of California
,
Berkeley, CA
.
18.
Peters
,
T.
,
Adamowicz
,
W. L.
, and
Boxall
,
P. C.
,
1995
, “
Influence of Choice Set Considerations in Modeling the Benefits From Improved Water Quality
,”
Water Resour. Res.
,
31
(
7
), pp.
1781
1787
.10.1029/95WR00975
19.
Williams
,
H.
, and
Ortúzar
,
J. D.
,
1982
, “
Behavioural Theories of Dispersion and the Mis-Specification of Travel Demand Models
,”
Transp. Res. Part B: Methodol.
,
16
(
3
), pp.
167
219
.10.1016/0191-2615(82)90024-8
20.
Shocker
,
A. D.
,
Ben-Akiva
,
M.
,
Boccara
,
B.
, and
Nedungadi
,
P.
,
1991
, “
Consideration Set Influences on Consumer Decision-Making and Choice: Issues, Models, and Suggestions
,”
Mark. Lett.
,
2
(
3
), pp.
181
197
.10.1007/BF02404071
21.
Parsons
,
G. R.
, and
Kealy
,
M. J.
,
1992
, “
Randomly Drawn Opportunity Sets in a Random Utility Model of Lake Recreation
,”
Land Econ.
,
68
(
1
), pp.
93
106
.10.2307/3146746
22.
Anderson
,
J. R.
, and
Bower
,
G. H.
,
1974
, “
A Propositional Theory of Recognition Memory
,”
Memory Cognit.
,
2
(
3
), pp.
406
412
.10.3758/BF03196896
23.
Henderson
,
G. R.
,
Iacobucci
,
D.
, and
Calder
,
B. J.
,
1998
, “
Brand Diagnostics: Mapping Branding Effects Using Consumer Associative Networks
,”
Eur. J. Oper. Res.
,
111
(
2
), pp.
306
327
.10.1016/S0377-2217(98)00151-9
24.
Pandey
,
G.
,
Chawla
,
S.
,
Poon
,
S.
,
Arunasalam
,
B.
, and
Davis
,
J. G.
,
2009
, “
Association Rules Network: Definition and Applications
,”
Stat. Anal. Data Min.
,
1
(
4
), pp.
260
279
.10.1002/sam.10027
25.
Silverstein
,
C.
,
Brin
,
S.
, and
Motwani
,
R.
,
1998
, “
Beyond Market Baskets: Generalizing Association Rules to Dependence Rules
,”
Data Min. Knowl. Discovery
,
2
(
1
), pp.
39
68
.10.1023/A:1009713703947
26.
Swait
,
J.
, and
Ben-Akiva
,
M.
,
1987
, “
Incorporating Random Constraints in Discrete Models of Choice Set Generation
,”
Transp. Res. Part B: Methodol.
,
21
(
2
), pp.
91
102
.10.1016/0191-2615(87)90009-9
27.
Hauser
,
J. R.
,
2014
, “
Consideration-Set Heuristics
,”
J. Bus. Res.
,
67
(
8
), pp.
1688
1699
.10.1016/j.jbusres.2014.02.015
28.
Ben-Akiva
,
M.
, and
Boccara
,
B.
,
1995
, “
Discrete Choice Models With Latent Choice Sets
,”
Int. J. Res. Mark.
,
12
(
1
), pp.
9
24
.10.1016/0167-8116(95)00002-J
29.
Andrews
,
R. L.
, and
Srinivasan
,
T.
,
1995
, “
Studying Consideration Effects in Empirical Choice Models Using Scanner Panel Data
,”
J. Mark. Res.
,
32
(
1
), pp.
30
41
.10.2307/3152108
30.
Swait
,
J.
,
2001
, “
A Non-Compensatory Choice Model Incorporating Attribute Cutoffs
,”
Transp. Res. Part B: Methodol.
,
35
(
10
), pp.
903
928
.10.1016/S0191-2615(00)00030-8
31.
Cantillo
,
V.
, and
Ortúzar
,
J. D. D.
,
2005
, “
A Semi-Compensatory Discrete Choice Model With Explicit Attribute Thresholds of Perception
,”
Transp. Res. Part B: Methodol.
,
39
(
7
), pp.
641
657
.10.1016/j.trb.2004.08.002
32.
Dieckmann
,
A.
,
Dippold
,
K.
, and
Dietrich
,
H.
,
2009
, “
Compensatory Versus Noncompensatory Models for Predicting Consumer Preferences
,”
Judgment Decis. Making
,
4
(
3
), pp.
200
213
.
33.
Martínez
,
F.
,
Aguila
,
F.
, and
Hurtubia
,
R.
,
2009
, “
The Constrained Multinomial Logit: A Semi-Compensatory Choice Model
,”
Transp. Res. Part B: Methodol.
,
43
(
3
), pp.
365
377
.10.1016/j.trb.2008.06.006
34.
Silva-Risso
,
J.
, and
Ionova
,
I.
,
2008
, “
Practice Prize Winner-A Nested Logit Model of Product and Transaction-Type Choice for Planning Automakers' Pricing and Promotions
,”
Mark. Sci.
,
27
(
4
), pp.
545
566
.10.1287/mksc.1080.0374
35.
Wasserman
,
S.
, and
Faust
,
K.
,
1994
,
Social Network Analysis: Methods and Applications
,
Cambridge University
,
Cambridge
.10.1017/CBO9780511815478
36.
Sosa
,
M.
,
Mihm
,
J.
, and
Browning
,
T.
,
2011
, “
Degree Distribution and Quality in Complex Engineered Systems
,”
ASME J. Mech. Des.
,
133
(
10
),
p. 101008
.10.1115/1.4004973
37.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
,
2007
, “
A Network Approach to Define Modularity of Components in Complex Products
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1118
1129
.10.1115/1.2771182
38.
Netzer
,
O.
,
Feldman
,
R.
,
Goldenberg
,
J.
, and
Fresko
,
M.
,
2012
, “
Mine Your Own Business: Market-Structure Surveillance Through Text Mining
,”
Mark. Sci.
,
31
(
3
), pp.
521
543
.10.1287/mksc.1120.0713
39.
Raeder
,
T.
, and
Chawla
,
N. V.
,
2011
, “
Market Basket Analysis With Networks
,”
Social Network Anal. Min.
,
1
(
2
), pp.
97
113
.10.1007/s13278-010-0003-7
40.
Moe
,
W. W.
,
2006
, “
An Empirical Two-Stage Choice Model With Varying Decision Rules Applied to Internet Clickstream Data
,”
J. Mark. Res.
,
43
(
4
), pp.
680
692
.10.1509/jmkr.43.4.680
41.
Newman
,
M. E.
, and
Girvan
,
M.
,
2004
, “
Finding and Evaluating Community Structure in Networks
,”
Phys. Rev. E
,
69
(
2
), p.
026113
.10.1103/PhysRevE.69.026113
42.
Weinstein
,
A.
,
1994
, Market Segmentation: Using Demographics, Psychographics and Other Niche Marketing Techniques to Predict and Model Customer Behavior,
Probus Publishing Company
,
Chicago
.
43.
Eshghi
,
A.
,
Haughton
,
D.
,
Legrand
,
P.
,
Skaletsky
,
M.
, and
Woolford
,
S.
,
2011
, “
Identifying Groups: A Comparison of Methodologies
,”
J. Data Sci.
,
9
, pp.
271
291
.
44.
Lemp
,
J. D.
, and
Kockelman
,
K. M.
,
2012
, “
Strategic Sampling for Large Choice Sets in Estimation and Application
,”
Transp. Res. Part A: Policy Pract.
,
46
(
3
), pp.
602
613
.10.1016/j.tra.2011.11.004
45.
Hyndman
,
R. J.
, and
Koehler
,
A. B.
,
2006
, “
Another Look at Measures of Forecast Accuracy
,”
Int. J. Forecasting
,
22
(
4
), pp.
679
688
.10.1016/j.ijforecast.2006.03.001
46.
Fruchterman
,
T. M. J.
, and
Reingold
,
E. M.
,
1991
, “
Graph Drawing by Force-Directed Placement
,”
Software: Pract. Exp.
,
21
(
11
), pp.
1129
1164
.10.1002/spe.4380211102
47.
Mislove
,
A.
,
Marcon
,
M.
,
Gummadi
,
K. P.
,
Druschel
,
P.
, and
Bhattacharjee
,
B.
,
2007
, “
Measurement and Analysis of Online Social Networks
,”
The 7th
ACM SIGCOMM
Conference on Internet Measurement,
ACM
, New York, pp.
29
42
.10.1145/1298306.1298311
48.
Hartigan
,
J. A.
, and
Wong
,
M. A.
,
1979
, “
Algorithm AS 136: A k-Means Clustering Algorithm
,”
Appl. Stat.
,
28
(
1
), pp.
100
108
.10.2307/2346830
49.
Krackhardt
,
D.
,
1988
, “
Predicting With Networks: Nonparametric Multiple Regression Analysis of Dyadic Data
,”
Social Networks
,
10
(
4
), pp.
359
381
.10.1016/0378-8733(88)90004-4
50.
Bass
,
F. M.
,
1974
, “
The Theory of Stochastic Preference and Brand Switching
,”
J. Mark. Res.
, pp.
1
20
.10.2307/3150989
51.
Clauset
,
A.
,
Newman
,
M. E.
, and
Moore
,
C.
,
2004
, “Finding Community Structure in Very Large Networks,”
Phys. Rev. E
,
70
(
6
), p. 066111.10.1103/PhysRevE.70.066111
52.
Csardi
,
G.
, and
Nepusz
,
T.
,
2005
, The Igraph Software Package for Complex Network Research, InterJournal, Complex Systems, http://igraph.org
You do not currently have access to this content.