A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.

References

References
1.
Heisler
,
H.
,
2002
,
Advanced Vehicle Technology
,
2nd ed.
,
Elsevier Ltd.
,
London
.
2.
Wakabayashi
,
T.
,
Matsuto
,
T.
,
Tani
,
K.
, and
Ohta
,
A.
,
1998
, “
Development of Motor Actuated Antilock Brake System for Light Weight Motorcycle
,”
JSAE Rev.
,
19
(
4
), pp.
373
377
.10.1016/S0389-4304(98)00034-4
3.
Lu
,
C.-Y.
, and
Shih
,
M.-C.
,
2005
, “
Design of a Hydraulic Anti-Lock Braking Modulator and an Intelligent Brake Pressure Controller for a Light Motorcycle
,”
Veh. Syst. Dyn.
,
43
(
3
), pp.
217
232
.10.1080/00423110412331282878
4.
Ho
,
L. M.
,
Roberts
,
R.
,
Hartmann
,
H.
, and
Gombert
,
B.
,
2006
, “
The Electronic Wedge brake—EWB
,” Siemens AG, Siemens VDO Automotive,
SAE
Technical Paper No. 2006-01-3196.10.4271/2006-01-3196
5.
Choi
,
S.-B.
,
Sung
,
K.-G.
,
Cho
,
M.-S.
, and
Lee
,
Y.-S.
,
2007
, “
The Braking Performance of a Vehicle Anti-Lock Brake System Featuring an Electro-Rheological Valve Pressure Modulator
,”
Smart Mater. Struct.
,
16
(
4
), pp.
1285
1297
.10.1088/0964-1726/16/4/041
6.
Huang
,
T.-C.
,
2008
, “
Antilock Brake System Structure
,” Taiwan Patent No. 200,942,708.
7.
Yang
,
C.-P.
, and
Liu
,
T.
,
2013
, “
Analysis of a New Mechanical Anti-Lock Brake System for Two-Wheeled Vehicle
,”
Appl. Mech. Mater.
,
437
, pp.
313
320
.10.4028/www.scientific.net/AMM.437.313
8.
Ruan
,
Z.-C.
,
1999
, “
Bicycle Antilock Brake Device
,” Taiwan Patent No. 363,576.
9.
Chen
,
J.-W.
,
2000
, “
Anti-Lock Brake Device for Bicycle
,” Taiwan Patent No. 450,243.
10.
Huang
,
C.-H.
,
2006
, “
Stepwise Brake Structure
,” Taiwan Patent No. I353943.
11.
Xu
,
Z.-H.
,
Gu
,
W.-Q.
, and
Hong
,
W.-J.
,
2002
, “
Anti-Lock Braking Device of Bicycle
,” Taiwan Patent No.
559
,
179
.
12.
Lv
,
C.-M.
,
Lv
,
Y.-W.
, and
Lv
,
Y.-X.
,
2011
, “
Two-Wheel Braking Control Device
,” Taiwan Patent No. M402254.
13.
Swift
,
D. P.
,
LaCroix
,
T. R.
, and
Bullock
,
W. E.
,
1997
, “
Centrifugal Shopping Cart Brake
,” U.S. Patent No. 5,607,030.
14.
Kidd
,
M. T.
, and
Cline
,
G. L.
,
2008
, “
Centrifugal Brakes for Wheels
,” U.S. Patent No. 7,464,797 B2.
15.
Ferdman
,
L.
,
2013
, “
Wheel Speed Regulator
,” U. S. Patent No. 0025984 A1.
16.
Shigley
,
J. E.
, and
Mischke
,
C. R.
,
2001
,
Mechanical Engineering Design
,
6th ed.
,
McGraw-Hill
,
New York
.
17.
Huang
,
F.
,
Mo
,
Y.-M.
, and
Lv
,
J.-C.
,
2010
, “
Study on Heat Fading of Phenolic Resin Friction Material for Micro-Automobile Clutch
,”
Proceedings of the IEEE International Conference on Measuring Technology and Mechatronics Automation (ICMTMA)
, Vol.
3
, pp.
596
599
.
18.
Cossalter
,
V.
,
2006
,
Motorcycle Dynamics
,
2nd ed.
,
Race Dynamics
,
Greendale, WI
.
19.
Kiencke
,
U.
, and
Daiss
,
A.
,
1994
, “
Estimation of Tyre Friction for Enhanced ABS-Systems
,”
JSAE Rev.
,
16
(2), pp.
221
221
(1).10.1016/0389-4304(95)94970-X
20.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
,
4th ed.
,
Wiley
,
Ottawa, ON
, p.
27
.
21.
Heingartner
,
P.
, and
Mba
,
D.
,
2005
, “
Determining Power Losses in the Helical Gear Mesh
,”
Proceedings of the Gear Technology
, pp.
32
37
.
22.
Kuria
,
J.
, and
Kihiu
,
J.
,
2011
, “
Prediction of Overall Efficiency in Multistage Gear Trains
,”
World Acad. Sci., Eng. Technol.
,
5
(
2
), pp.
50
56
.
23.
Shigley
,
J. E.
, and
Mischke
,
C. R.
,
1996
,
Standard Handbook of Machine Design
,
2nd ed.
,
McGraw-Hill
,
New York
.
24.
Çengel
,
Y. A.
,
2004
,
Heat Transfer
,
2nd ed.
,
McGraw-Hill
,
New York
.
25.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
,
4th ed.
,
Wiley
,
Ottawa, ON
, p.
17
.
26.
Haidar
,
S. G.
,
Kumar
,
D.
,
Bassi
,
R. S.
, and
Deshmukh
,
S. C.
,
2004
, “
Average Versus Maximum Grip Strength: Which is More Consistent?
,”
J. Hand Surg.-Br. Eur.
,
29
(
1
), pp.
82
84
.10.1016/j.jhsb.2003.09.012
You do not currently have access to this content.