In joint replacement surgery, patient specific surgical guides (PSSGs) are used for accurate alignment of implant components. PSSGs are designed preoperatively to have a geometric fit with the patient's bone such that the incorporated guidance for drilling and cutting is instantly aligned. The surgeon keeps the PSSG in position with a pushing force, and it is essential that this position is maintained while drilling or cutting. Hence, the influence of the location and direction of the pushing force should be minimal. The extent that the pushing force may vary is what we refer to as docking robustness. In this article, we present a docking robustness framework comprising the following quantitative measures and graphical tool. Contact efficiency ηc is used for the quantification of the selected bone–guide contact. Guide efficiency ηg is used for the quantification of the whole guide including an application surface whereon the surgeon can push. Robustness maps are used to find a robust location for the application surface based on gradient colors. Robustness R is a measure indicating what angular deviation is minimally allowed at the worst point on the application surface. The robustness framework is utilized in an optimization of PSSG dimensions for the distal femur. This optimization shows that 12 contacts already result in a relatively high contact efficiency of 0.74 ± 0.02 (where the maximum of 1.00 is obtained when the guide is designed for full bone–guide contact). Six contacts seem to be insufficient as the obtained contact efficiency is only 0.18 ± 0.02.

References

References
1.
Krishnan
,
S.
,
Dawood
,
A.
,
Richards
,
R.
,
Henckel
,
J.
, and
Hart
,
A.
,
2012
, “
A Review of Rapid Prototyped Surgical Guides for Patient-Specific Total Knee Replacement
,”
J. Bone Joint Surg.
,
94-B
(
11
), pp.
1457
1461
.10.1302/0301-620X.94B11.29350
2.
Boonen
,
B.
,
Schotanus
,
M.
, and
Kort
,
N.
,
2012
, “
Preliminary Experience With the Patient-Specific Templating Total Knee Arthroplasty
,”
Acta Orthop.
,
83
(
4
), pp.
387
393
.10.3109/17453674.2012.711700
3.
Conteduca
,
F.
,
Iorio
,
R.
,
Mazza
,
D.
,
Caperna
,
L.
,
Bolle
,
G.
,
Argento
,
G.
, and
Ferretti
,
A.
,
2012
, “
Are MRI-Based, Patient Matched Cutting Jigs as Accurate as the Tibial Guides?
Int. Orthop.
,
36
(
8
), pp.
1589
1593
.10.1007/s00264-012-1522-9
4.
Nunley
,
R. M.
,
Ellison
,
B. S.
,
Zhu
,
J.
,
Ruh
,
E. L.
,
Howell
,
S. M.
, and
Barrack
,
R. L.
,
2012
, “
Do Patient-Specific Guides Improve Coronal Alignment in Total Knee Arthroplasty
?”
Clin. Orthop. Relat. Res.
,
470
(
3
), pp.
895
902
.10.1007/s11999-011-2222-2
5.
Radermacher
,
K.
,
Portheine
,
F.
,
Anton
,
M.
,
Zimolong
,
A.
,
Kaspers
,
G.
,
Rau
,
G.
, and
Staudte
,
H. W.
,
1998
, “
Computer Assisted Orthopaedic Surgery With Image Based Individual Templates
,”
Clin. Orthop. Relat. Res.
,
354
, pp.
28
38
.10.1097/00003086-199809000-00005
6.
Hafez
,
M.
,
Chelule
,
K.
,
Seedhom
,
B.
, and
Sherman
,
K.
,
2007
, “
Computer-Assisted Total Knee Arthroplasty Using Patient-Specific Templates: The Custom-Made Cutting Guides
,”
Navigation and MIS in Orthopedic Surgery
,
Springer
,
Heidelberg, Germany
, pp.
182
188
.10.1007/978-3-540-36691-1_24
7.
Haselbacher
,
M.
,
Sekyra
,
K.
,
Mayr
,
E.
,
Thaler
,
M.
, and
Nogler
,
M.
,
2012
, “
A New Concept of a Multiple-Use Screw-Based Shape-FittingPlate in Total Knee Arthroplasty
,”
J. Bone Joint Surg.
,
94-B
(
SUPP XLIV
), p.
65
.
8.
Asada
,
H.
, and
By
,
A.
,
1985
, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly With Automatically Reconfigurable Fixtures
,”
IEEE J. Rob. Automat.
,
RA-1
(
2
), pp.
86
94
.10.1109/JRA.1985.1087007
9.
Mattheijer
,
J.
,
Herder
,
J. L.
,
Tuijthof
,
G. J.
,
Nelissen
,
R. G.
,
Dankelman
,
J.
, and
Valstar
,
E. R.
,
2013
, “
Shaping Patient Specific Surgical Guides for Arthroplasty to Obtain High Docking Robustness
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071001
.10.1115/1.4024231
10.
Brost
,
R.
, and
Goldberg
,
K.
,
1996
, “
A Complete Algorithm for Designing Planar Fixtures Using Modular Components
,”
IEEE Trans. Rob. Automat.
,
12
(
1
), pp.
31
46
.10.1109/70.481749
11.
Chou
,
Y.
,
Chandru
,
V.
, and
Barash
,
M.
,
1989
, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
J. Eng. Ind.
,
111
(
4
), pp.
299
306
.10.1115/1.3188764
12.
Markenscoff
,
X.
,
Ni
,
L.
, and
Papadimitriou
,
C.
,
1990
, “
The Geometry of Grasping
,”
Int. J. Rob. Res.
,
9
(
1
), pp.
61
74
.10.1177/027836499000900102
13.
Bicchi
,
A.
,
1995
, “
On the Closure Properties of Robotic Grasping
,”
Int. J. Rob. Res.
,
14
(
4
), pp.
319
334
.10.1177/027836499501400402
14.
Trinkle
,
J.
,
1992
, “
A Quantitative Test for Form Closure Grasps
,” 1992
lEEE/RSJ
International Conference on Intelligent Robots and Systems, Raleigh, NC, July 7–10, Vol.
3
, pp.
1670
1677
.10.1109/IROS.1992.594246
15.
Dodou
,
D.
,
Breedveld
,
P.
, and
Wieringa
,
P.
,
2006
, “
The Role of Geometry in the Friction Generated on the Colonic Surface by Mucoadhesive Films
,”
J. Appl. Phys.
,
100
(
1
), p.
014904
.10.1063/1.2209070
16.
Bowden
,
F.
,
Moore
,
A.
, and
Tabor
,
D.
,
1943
, “
The Ploughing and Adhesion of Sliding Metals
,”
J. Appl. Phys.
,
14
(
2
), pp.
80
91
.10.1063/1.1714954
17.
Pottmann
,
H.
,
Peternell
,
M.
, and
Ravani
,
B.
,
1999
, “
An Introduction to Line Geometry With Applications
,”
Comput. Aided Des.
,
31
(
1
), pp.
3
16
.10.1016/S0010-4485(98)00076-1
18.
Mason
,
M. T.
,
2001
,
Mechanics of Robotic Manipulation
,
The MIT Press
, Cambridge, MA.
19.
Weinzierl
,
S.
,
2000
, “
Introduction to Monte Carlo Methods
,” NIKHEF Theory Group, Amsterdam, The Netherlands, http://arxiv.org/abs/hep-ph/0006269v1
20.
Marsaglia
,
G.
,
1972
, “
Choosing a Point From the Surface of a Sphere
,”
Ann. Math. Stat.
,
43
(
2
), pp.
645
646
.10.1214/aoms/1177692644
21.
Fukuda
,
K.
,
2004
, “
Frequently Asked Questions in Polyhedral Computation
,” Swiss Federal Institute of Technology, Lausanne and Zurich, Switzerland. Available at: ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/polyfaq040618.pdf
22.
Dattorro
,
J.
,
2005
,
Convex Optimization & Euclidian Distance Geometry
,
Meboo Publishing
,
Palo Alto, CA
.
23.
Fukuda
,
K.
,
1999
, “
cdd/cdd+ Reference Manual
,” Swiss Federal Institute of Technology, Lausanne and Zurich, Switzerland. Available at: ftp://ftp.ifor.math.ethz.ch/pub/fukuda/cdd/cddman/cddman.html
24.
Gómez
,
F.
,
Ramaswami
,
S.
, and
Toussaint
,
G.
,
1997
, “
On Removing Non-Degeneracy Assumptions in Computational Geometry
,”
Algorithms and Complexity
,
Springer
,
Berlin Heidelberg, Germany
, pp.
86
99
.10.1007/3-540-62592-5_63
25.
Franc
,
V.
, and
Hlavác
,
V.
,
2004
,
Statistical Pattern Recognition Toolbox for Matlab
,
Center for Machine Perception, Czech Technical University
,
Prague, Czech Republic
.
26.
Van den Broeck
,
J.
,
Wirix-Speetjens
,
R.
, and
Vander Sloten
,
J.
,
2015
, “
Preoperative Analysis of the Stability of Fit of a Patient-Specific Surgical Guide
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
1
), pp.
38
47
.10.1080/10255842.2013.774383
27.
Lin
,
Q.
,
Burdick
,
J. W.
, and
Rimon
,
E.
,
2000
, “
A Stiffness-Based Quality Measure for Compliant Grasps and Fixtures
,”
IEEE Trans. Rob. Automat.
,
16
(
6
), pp.
675
688
.10.1109/70.897779
You do not currently have access to this content.