This paper proposes a new method for designing the crease patterns of deployable membranes that can be wrapped up compactly. The method utilizes conformal mapping and the origami folding technique. The mapping of the flow with circulation can be used to control the angles between the fold lines, produce elements of the same shape, and maintain regularity of the fold lines. The proposed method thus enables the systematic and efficient design of complex patterns based on simple ones. The proposed method was successfully used to produce the patterns of Nojima and other extended new patterns of deployable membranes consisting of discrete equiangular spirals. The patterns were wrapped and used to form pillars such as regular polygonal, rectangular, and diamond pillars. Toward the industrial application of the proposed method, this paper also discusses pattern design for space-saving storage and to reduce the effect of thickness when using versatile materials.

References

References
1.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1992
, “
Inextensional Wrapping of Flat Membranes
,”
Proceedings of the First International Seminar on Structural Morphology
, pp.
203
215
.
2.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
A New Concept for Solid Surface Deployable Antennas
,”
Acta Astronaut.
,
38
(
2
), pp.
103
113
.10.1016/0094-5765(96)00009-4
3.
Natori
,
M. C
,
1999
, “
Membrane Structures in Space (in Japanese)
,”
Jpn. Soc. Mech. Eng.
,
102
(
962
), pp.
48
50
.
4.
Natori
,
M. C.
,
Katsumata
,
N.
,
Yamakawa
,
H.
,
Sakamoto
,
H.
, and
Kishimoto
,
N.
,
2013
, “
Conceptual Model Study Using Origami for Membrane Space Structures
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, No. DETC2013-13490.
5.
Reynolds
,
W. D.
,
Jeon
,
S. K.
,
Banik
,
J. A.
, and
Murphey
,
T. W.
,
2013
, “
Advanced Folding Approaches for Deployable Spacecraft Payloads
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, No. DETC2013-13378.
6.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.10.1115/1.4025372
7.
Johnson
,
L.
,
Young
,
R. M.
, and
Montgomery
, IV,
E. E.
,
2007
, “
Recent Advances in Solar Sail Propulsion Systems at NASA
,”
Acta Astronaut.
,
61
(
1–6
), pp.
376
382
.10.1016/j.actaastro.2007.01.047
8.
Freeland
,
R. E.
,
Bilyeu
,
G. D.
,
Veal
,
G. R.
, and
Mikulas
,
M. M.
,
1998
, “
Inflatable Deployable Space Structures Technology Summary
,” 49th International Astronautical Congress, Melbourne, Australia, No. IAF-98-I.5.01.
9.
Tsuda
,
Y.
,
Mori
,
O.
,
Funase
,
R.
,
Sawada
,
H.
,
Yamamoto
,
T.
,
Saiki
,
T.
,
Endo
,
T.
, and
Kawaguchi
,
J.
,
2011
, “
Flight Status of IKAROS Deep Space Solar Demonstration
,”
Acta Astronaut.
,
69
(
9–10
), pp.
833
840
.10.1016/j.actaastro.2011.06.005
10.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
Int. J. Jpn. Soc. Mech. Eng.
,
45
(
1
), pp.
364
370
.
11.
Nojima
,
T.
,
2003
, “
Modelling of Compact Folding/Wrapping of Flat Circular Membranes
,”
Int. J. Jpn. Soc. Mech. Eng., Ser. C
,
46
(
4
), pp.
1547
1553
.
12.
Nojima
,
T.
,
2004
, “
Folding/Wrapping Methods of Circular Membranes Easily Deployable (in Japanese)
,”
Jpn. Soc. Mech. Eng., Ser. C
,
70
(
689
), pp.
251
257
.10.1299/kikaic.70.251
13.
Nojima
,
T.
,
2000
, “
Structure With Folding Lines, Folding Line Forming Mold, and Folding Line Forming Method
,” Patent Publication No.: WO/2001/081821, International Application NO.: PCT/JP2000/007348, International Filing Date: Oct. 20, 2000, Publication Date: Nov. 1, 2001.
14.
Miyake
,
I.
,
2013
, Domus, No. 974, pp.
16
20
, Editoriale Domus SpA, Italy.
15.
Miyake
,
I.
,
2014
, “
132.5 ISSEY MIYAKE
,” http://www.isseymiyake.com/brand/132_5.html
16.
Spiegel
,
M. R.
,
1964
,
Schaum's Outline of Theory and Problems of Complex Variables With an Introduction to Conformal Mapping and its Application
,
McGraw-Hill Book Company
,
New York
.
17.
Leonhardt
,
U.
,
2006
, “
Optical Conformal Mapping
,”
Science
,
312
(
5781
), pp.
1777
1780
.10.1126/science.1126493
18.
Gu
,
X.
,
Wang
,
Y.
,
Chan
,
T. F.
,
Thompson
,
P. M.
, and
Yau
,
S.-T.
,
2004
, “
Genus Zero Surface Conformal Mapping and its Application to Brain Surface Mapping
,”
IEEE Trans. Med. Imaging
,
23
(
8
), pp.
949
958
.10.1109/TMI.2004.831226
19.
Ishida
,
S.
,
Nojima
,
T.
, and
Hagiwara
,
I.
,
2014
, “
Mathematical Approach to Model Foldable Conical Structures Using Conformal Mapping
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091007
.10.1115/1.4027848
You do not currently have access to this content.