In conventional wind farm design and optimization, analytical wake models are generally used to estimate the wake-induced power losses. Different wake models often yield significantly dissimilar estimates of wake velocity deficit and wake width. In this context, the wake behavior, as well as the subsequent wind farm power generation, can be expressed as functions of a series of key factors. A quantitative understanding of the relative impact of each of these key factors, particularly under the application of different wake models, is paramount to reliable quantification of wind farm power generation. Such an understanding is however not readily evident in the current state of the art in wind farm design. To fill this important gap, this paper develops a comprehensive sensitivity analysis (SA) of wind farm performance with respect to the key natural and design factors. Specifically, the sensitivities of the estimated wind farm power generation and maximum farm output potential are investigated with respect to the following key factors: (i) incoming wind speed, (ii) ambient turbulence, (iii) land area per MW installed, (iv) land aspect ratio, and (v) nameplate capacity. The extended Fourier amplitude sensitivity test (e-FAST), which helpfully provides a measure of both first-order and total-order sensitivity indices, is used for this purpose. The impact of using four different analytical wake models (i.e., Jensen, Frandsen, Larsen, and Ishihara models) on the wind farm SA is also explored. By applying this new SA framework, it was observed that, when the incoming wind speed is below the turbine rated speed, the impact of incoming wind speed on the wind farm power generation is dominant, irrespective of the choice of wake models. Interestingly, for array-like wind farms, the relative importance of each input parameter was found to vary significantly with the choice of wake models, i.e., appreciable differences in the sensitivity indices (of up to 70%) were observed across the different wake models. In contrast, for optimized wind farm layouts, the choice of wake models was observed to have marginal impact on the sensitivity indices.

References

References
1.
European Wind Energy Association (EWEA)
,
2009
, “
Wind Energy – The Facts: A Guide to the Technology, Economics and Future of Wind Power
,” Vol.
I
,
Earthscan
,
Sterling, VA
.
2.
Méchali
,
M.
,
Barthelmie
,
R.
,
Frandsen
,
S.
,
Jensen
,
L.
, and
Réthoré
,
P.-E.
,
2006
, “
Wake Effects at Horns Rev and Their Influence on Energy Production
,”
Proceedings of the European Wind Energy Conference and Exhibition
.
3.
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2013
, “
Optimizing the Arrangement and the Selection of Turbines for Wind Farms Subject to Varying Wind Conditions
,”
Renewable Energy
,
52
, pp.
273
282
.10.1016/j.renene.2012.10.017
4.
Kusiak
,
A.
,
Zhang
,
Z.
, and
Li
,
M.
,
2010
, “
Optimization of Wind Turbine Performance With Data-Driven Models
,”
IEEE Trans. Sustainable Energy
,
1
(
2
), pp.
66
76
.10.1109/TSTE.2010.2046919
5.
González
,
J. S.
,
Rodriguez
,
A. G. G.
,
Mora
,
J. C.
,
Santos
,
J. R.
, and
Payan
,
M. B.
,
2010
, “
Optimization of Wind Farm Turbines Layout Using an Evolutive Algorithm
,”
Renewable Energy
,
35
(
8
), pp.
1671
1681
.10.1016/j.renene.2010.01.010
6.
Du Pont
,
B. L.
, and
Cagan
,
J.
,
2012
, “
An Extended Pattern Search Approach to Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081002
.10.1115/1.4006997
7.
Chen
,
L.
, and
MacDonald
,
E.
,
2012
, “
Considering Landowner Participation in Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
134
(
8
), p.
084506
.10.1115/1.4006999
8.
Jensen
,
N. O.
,
1983
, “
A Note on Wind Generator Interaction
,” Technical Report No. Risø-M-2411, Risø National Laboratory, Roskilde, Denmark.
9.
Katic
,
I.
,
Højstrup
,
J.
, and
Jensen
,
N. O.
,
1986
, “
A Simple Model for Cluster Efficiency
,”
Proceedings of the European Wind Energy Conference and Exhibition
, Vol.
1
, pp.
407
410
.
10.
Frandsen
,
S.
,
Barthelmie
,
R.
,
Pryor
,
S.
,
Rathmann
,
O.
,
Larsen
,
S.
,
Højstrup
,
J.
, and
Thøgersen
,
M.
,
2006
, “
Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms
,”
Wind Energy
,
9
(
2
), pp.
39
53
.10.1002/we.189
11.
Larsen
,
G. C.
,
1988
, “
A Simple Wake Calculation Procedure
,” Technical Report No. Risø-M-2760, Risø National Laboratory, Roskilde, Denmark.
12.
Dekker
,
J. W. M.
, and
Pierik
,
J. T. G.
, eds.,
1999
,
European Wind Turbine Standards II
.
ECN Solar & Wind Energy
,
Petten, The Netherlands
.
13.
Ishihara
,
T.
,
Yamaguchi
,
A.
, and
Fujino
,
Y.
,
2004
, “
Development of a New Wake Model Based on a Wind Tunnel Experiment
,” see http://windeng.t.u-tokyo.ac.jp/ishihara/posters/2004_gwp_poster.pdf (last accessed Jan. 2015).
14.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
,
2009
,
Sensitivity Analysis (Probability and Statistics)
,
Wiley
,
NY, USA
.
15.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
(Probability and Statistics),
Wiley
,
NY, USA
.
16.
Lackner
,
M. A.
,
Rogers
,
A. L.
, and
Manwell
,
J. F.
,
2008
, “
Uncertainty Analysis in MCP-Based Wind Resource Assessment and Energy Production Estimation
,”
ASME J. Sol. Energy Eng.
,
130
(
3
), p.
031006
.10.1115/1.2931499
17.
Rocklin
,
M. D.
, and
Constantinescu
,
E. M.
,
2009
, “
Adjoint Sensitivity Analysis for Wind Power Generation
,” see www.mcs.anl.gov/papers/P1704.pdf (last accessed Jan.
2015
).
18.
Kubik
,
M. L.
,
Coker
,
P. J.
, and
Hunt
,
C.
,
2011
, “
Using Meteorological Wind Data to Estimate Turbine Generation Output: A Sensitivity Analysis
,”
Proceedings of the World Renewable Energy Congress (WREC)
, pp.
4074
4081
.
19.
Capps
,
S.
,
Hall
,
A.
, and
Hughes
,
M.
,
2012
, “
Sensitivity of Southern California Wind Energy to Turbine Characteristics
,”
Wind Energy
,
17
(
1
), pp.
141
159
.10.1002/we.1570
20.
Fuglsang
,
P.
, and
Thomsen
,
K.
,
1998
, “
Cost Optimization of Wind Turbines for Large-Scale Off-Shore Wind Farms
,” Technical Report No. Risø-R-1000, Risø National Laboratory, Roskilde, Denmark.
21.
Haughton
,
J.
,
Giuffre
,
D.
,
Barrett
,
J.
, and
Tuerck
,
D. G.
,
2004
, “
An Economic Analysis of a Wind Farm in Nantucket Sound
,” see http://www.beaconhill.org/BHIStudies/Windmills2004/WindFarmArmyCorps.pdf.
22.
Dykes
,
K.
,
Ning
,
A.
,
Graf
,
P.
,
Scott
,
G.
,
Damiani
,
R.
,
Hand
,
M.
,
Meadows
,
R.
,
Musial
,
W.
,
Moriarty
,
P.
, and
Veers
,
P.
,
2012
, “
Sensitivity Analysis of Offshore Wind Cost of Energy
,” Technical Report No. NREL/PO-5000-56411, National Renewable Energy Laboratory, Golden, CO.
23.
Dinwoodie
,
I.
, and
McMillan
,
D.
,
2012
, “
Sensitivity of Offshore Wind Turbine Operation & Maintenance Costs to Operational Parameters
,”
Proceedings of the 42nd ESReDA Seminar on Risk and Reliability for Wind Energy and other Renewable Sources
.
24.
Martínez
,
E.
,
Jiménez
,
E.
,
Blanco
,
J.
, and
Sanz
,
F.
,
2010
, “
LCA Sensitivity Analysis of a Multi-Megawatt Wind Turbine
,”
Appl. Energy
,
87
(
7
), pp.
2293
2303
.10.1016/j.apenergy.2009.11.025
25.
Gu
,
Y.
,
Xie
,
L.
,
Rollow
,
B.
, and
Hesselbaek
,
B.
,
2011
, “
Congestion-Induced Wind Curtailment: Sensitivity Analysis and Case Studies
,”
Proceedings of the North American Power Symposium
,
IEEE
.
26.
Zack
,
J.
,
Natenberg
,
E.
,
Young
,
S.
,
Manobianco
,
J.
, and
Kamath
,
C.
,
2010
, “
Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-Term Wind Speed Forecasting
,” Technical Report No. LLNL-TR-458086, Lawrence Livermore National Laboratory, Livermore, CA.
27.
Osborn
,
J.
,
Wood
,
F.
,
Richey
,
C.
,
Sanders
,
S.
,
Short
,
W.
, and
Koomey
,
J.
,
2001
, “
A Sensitivity Analysis of the Treatment of Wind Energy in the AEO99 Version of NEMS
,” Technical Report No. LBNL-44070/TP-28529, Lawrence Livermore National Laboratory/National Renewable Energy Laboratory, Berkeley, CA/Golden, CO.
28.
Steinbuch
,
M.
,
de Boer
,
W.
,
Bosgra
,
O.
,
Peters
,
S.
, and
Ploeg
,
J.
,
1988
, “
Optimal Control of Wind Power Plants
,”
J. Wind Eng. Ind. Aerodyn.
,
27
(
1–3
), pp.
237
246
.10.1016/0167-6105(88)90039-6
29.
Johnson
,
K. E.
, and
Thomas
,
N.
,
2009
, “
Wind Farm Control: Addressing the Aerodynamic Interaction Among Wind Turbines
,”
Proceedings of the American Control Conference (ACC)
.
30.
Brand
,
M. S. A. J.
, and
Wisniewski
,
R.
,
2011
, “
A Wind Farm Controller for Load and Power Optimization in a Farm
,”
Proceedings of the IEEE International Symposium on Computer-Aided Control System Design (CACSD)
.
31.
Kusiak
,
A.
, and
Song
,
Z.
,
2010
, “
Design of Wind Farm Layout for Maximum Wind Energy Capture
,”
Renewable Energy
,
35
, pp.
685
694
.10.1016/j.renene.2009.08.019
32.
Marden
,
J. R.
,
Ruben
,
S. D.
, and
Pao
,
L. Y.
,
2013
, “
A Model-Free Approach to Wind Farm Control Using Game Theoretic Methods
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1207
1214
.10.1109/TCST.2013.2257780
33.
GE Energy
,
2009
, “
GE 1.5MW Wind Turbine Series
,” see http://geosci.uchicago.edu/~moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf (last accessed Jan 2015).
34.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
,
2nd ed.
,
Earthscan
,
Sterling, VA
.
35.
Sørensen
,
J. N.
, and
Myken
,
A.
,
1992
, “
Unsteady Actuator Disc Model for Horizontal Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
39
(
1–3
), pp.
139
149
.10.1016/0167-6105(92)90540-Q
36.
Larsen
,
G. C.
,
Madsen
,
H. A.
,
Bingöl
,
F.
,
Mann
,
J.
,
Ott
,
S.
,
Sørensen
,
J. N.
,
Okulov
,
V.
,
Troldborg
,
N.
,
Nielsen
,
M.
,
Thomsen
,
K.
,
Larsen
,
T. J.
, and
Mikkelsen
,
R.
,
2007
, “
Dynamic Wake Meandering Modeling
,” Technical Report No. Risø-R-1607, Risø National Laboratory, Roskilde, Denmark.
37.
Churchfield
,
M.
, and
Lee
,
S.
,
2012
, “
High-fidelity analysis of wind plant and wind turbine fluid physics and structural response using computational fluid dynamics (CFD) and FAST
,” See wind.nrel.gov/designcodes/simulators/SOWFA/ (last accessed Jan. 2015).
38.
Fleming
,
P.
,
Gebraad
,
P.
,
Churchfield
,
M.
,
Lee
,
S.
,
Johnson
,
K.
,
Michalakes
,
J.
, and
van Wingerden
,
J.-W.
,
2013
, “
Sowfa + Super Controller User’s Manual
,” National Renewable Energy Laboratory, Golden, CO.
39.
Annoni
,
J.
,
Seiler
,
P.
,
Johnson
,
K.
,
Fleming
,
P.
, and
Gebraad
,
P.
,
2014
, “
Evaluating Wake Models for Wind Farm Control
,”
Proceedings of the American Control Conference (ACC)
.
40.
Gaumond
,
M.
,
Réthoré
,
P.-E.
,
Bechmann
,
A.
,
Ott
,
S.
,
Larsen
,
G. C.
,
Pena Diaz
,
A.
, and
Kurt
,
K. S.
,
2012
, “
Benchmarking of Wind Turbine Wake Models in Large Offshore Windfarms
,”
Proceedings of the Science of Making Torque From Wind
.
41.
Beaucage
,
P.
,
Brower
,
M.
,
Robinson
,
N.
, and
Alonge
,
C.
,
2012
, “
Overview of Six Commercial and Research Wake Models for Large Offshore Wind Farms
,”
Proceedings of the European Wind Energy Associate (EWEA)
.
42.
Barthelmie
,
R.
, and
Pryor
,
S. C.
,
2013
, “
An Overview of Data for Wake Model Evaluation in the Virtual Wakes Laboratory
,”
Appl. Energy
,
104
, pp.
838
844
.10.1016/j.apenergy.2012.12.013
43.
Herbert-Acero
,
J. F.
,
Probst
,
O.
,
Réthoré
,
P.-E.
,
Larsen
,
G. C.
, and
Castillo-Villar
,
K. K.
,
2014
, “
A Review of Methodological Approaches for the Design and Optimization of Wind Farms
,”
Energies
,
7
(
11
), pp.
6930
7016
.10.3390/en7116930
44.
Garza
,
J.
,
Blatt
,
A.
,
Gandoin
,
R.
, and
Hui
,
S.
,
2011
, “
Evaluation of Two Novel Wake Models in Offshore Wind Farms
,”
Proceedings of the European Wind Energy Associate Offshore Conference
.
45.
Ott
,
S.
,
Berg
,
J.
, and
Nielsen
,
M.
,
2011
, “
Linearised CFD Models for Wakes
,” Technical Report No. Risø-R-1772, Risø National Laboratory, Roskilde, Denmark.
46.
Chowdhury
,
S.
,
Zhang
,
J.
,
Messac
,
A.
, and
Castillo
,
L.
,
2012
, “
Characterizing the Influence of Land Area and Nameplate Capacity on the Optimal Wind Farm Performance
,”
Proceedings of the 6th ASME International Conference on Energy Sustainability
, pp.
1349
1359
.
47.
Denholm
,
P.
,
Hand
,
M.
,
Jackson
,
M.
, and
Ong
,
S.
,
2009
, “
Land-Use Requirements of Modern Wind Power Plants in the United States
,” Technical Report No. NREL/TP-6A2-45834, National Renewable Energy Laboratory, Golden, CO.
48.
Chowdhury
,
S.
,
Tong
,
W.
,
Messac
,
A.
, and
Zhang
,
J.
,
2013
, “
A Mixed-Discrete Particle Swarm Optimization Algorithm With Explicit Diversity-Preservation
,”
Struct. Multidisc. Optim.
,
47
(
3
), pp.
367
388
.10.1007/s00158-012-0851-z
49.
Saltelli
,
A.
, and
Bolado
,
R.
,
1998
, “
An Alternative Way to Compute Fourier Amplitude Sensitivity Test (FAST)
,”
Comput. Stat. Data Anal.
,
26
(
4
), pp.
445
460
.10.1016/S0167-9473(97)00043-1
50.
Cukier
,
R. I.
,
Fortuin
,
C. M.
,
Shuler
,
K. E.
,
Petschek
,
A. G.
, and
Schaibly
,
J. H.
,
1973
, “
Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. I Theory
,”
J. Chem. Phys.
,
59
(
8
), pp.
3873
3878
.10.1063/1.1680571
51.
Schaibly
,
J. H.
, and
Shuler
,
K. E.
,
1973
, “
Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. II. Applications
,”
J. Chem. Phys.
,
59
(
8
), pp.
3879
3888
.10.1063/1.1680572
52.
Cukier
,
R. I.
,
Levine
,
H. B.
, and
Shuler
,
K. E.
,
1975
, “
Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. III. Analysis of the Approximations
,”
J. Chem. Phys.
,
63
(
3
), pp.
1140
1149
.10.1063/1.431440
53.
Cukier
,
R. I.
,
1978
, “
Nonlinear Sensitivity Analysis of Multiparameter Model Systems
,”
J. Comput. Phys.
,
26
(
1
), pp.
1
42
.10.1016/0021-9991(78)90097-9
54.
IEC-61400-1
,
2005
,
Wind Turbines—Part 1: Design Requirements
,
3rd ed.
,
International Electrotechnical Commission
,
Geneva, Switzerland
.
You do not currently have access to this content.