Centralized augmented Lagrangian coordination (ALC) has drawn much attention due to its parallel computation capability, efficiency, and flexibility. The initial setting and update strategy of the penalty weights in this method are critical to its performance. The traditional weight update strategy always increases the weights and research shows that inappropriate initial weights may cause optimization failure. Making use of the Karush–Kuhn–Tucker (KKT) optimality conditions for the all-in-one (AIO) and decomposed problems, the terms “primal residual” and “dual residual” are introduced into the centralized ALC, and a new update strategy considering both residuals and thus guaranteeing the unmet optimality condition in the traditional update is introduced. Numerical tests show a decrease in the iteration number and significant improvements in solution accuracy with both calculated and fine-tuned initial weights using the new update. Additionally, the proposed approach is capable to start from a wide range of possible weights and achieve optimality, and therefore brings robustness to the centralized ALC.

References

References
1.
Everett
,
H.
, III
,
1963
, “
Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources
,”
Oper. Res.
,
11
(
3
), pp.
399
417
.10.1287/opre.11.3.399
2.
Lasdon
,
L. S.
,
1968
, “
Duality and Decomposition in Mathematical Programming
,”
IEEE Trans. Syst. Sci. Cybern.
,
4
(
2
), pp.
86
100
.10.1109/TSSC.1968.300135
3.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.10.1115/1.1582501
4.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
,
2003
, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
,
41
(
5
), pp.
897
905
.10.2514/2.2025
5.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
,
2003
, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
481
489
.10.1115/1.1586308
6.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
,
2005
, “
An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
206
214
.10.1115/1.1830046
7.
Lassiter
,
J. B.
,
Wiecek
,
M. M.
, and
Andrighetti
,
K. R.
,
2005
, “
Lagrangian Coordination and Analytical Target Cascading: Solving ATC-Decomposed Problems With Lagrangian Duality
,”
Optim. Eng.
,
6
(
3
), pp.
361
381
.10.1007/s11081-005-1744-4
8.
Guarneri
,
P.
,
Leverenz
,
J. T.
,
Wiecek
,
M. M.
, and
Fadel
,
G.
,
2013
, “
Optimization of Nonhierarchically Decomposed Problems
,”
J. Comput. Appl. Math.
,
246
, pp.
312
319
.10.1016/j.cam.2012.12.005
9.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J. J.
,
2008
, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051402
.10.1115/1.2838334
10.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
,
2006
, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
176
189
.10.1007/s00158-005-0579-0
11.
Bertsekas
,
D. P.
,
1999
,
Nonlinear Programming
,
2nd ed.
,
Athena Scientific
,
Belmont, MA
.
12.
Tosserams
,
S.
,
Kokkolaras
,
M.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2010
, “
A Nonhierarchical Formulation of Analytical Target Cascading
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051002
.10.1115/1.4001346
13.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2009
, “
Block-Separable Linking Constraints in Augmented Lagrangian Coordination
,”
Struct. Multidiscip. Optim.
,
37
(
5
), pp.
521
527
.10.1007/s00158-008-0244-5
14.
Tosserams
,
S.
,
2008
, “
Distributed Optimization for Systems Design: An Augmented Lagrangian Coordination Method
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
15.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2010
, “
Multi-Modality in Augmented Lagrangian Coordination for Distributed Optimal Design
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
329
352
.10.1007/s00158-009-0371-7
16.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2010
, “
A Micro-Accelerometer MDO Benchmark Problem
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
255
275
.10.1007/s00158-009-0422-0
17.
Xu
,
M.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2014
, “
Solving Structure for Network-Decomposed Problems Optimized With Augmented Lagrangian Coordination
,”
ASME
Paper No. DETC2014-35121. 10.1115/DETC2014-35121
18.
Wang
,
W.
,
Xu
,
M.
,
Guarneri
,
P.
,
Fadel
,
G.
, and
Blouin
,
V.
,
2012
, “
A Consensus Optimization Via Alternating Direction Method of Multipliers for Network Target Coordination
,”
AIAA
Paper No. 2012-5552. 10.2514/6.2012-5552
19.
Wang
,
W.
,
Guarneri
,
P.
,
Fadel
,
G.
, and
Blouin
,
V.
,
2012
, “
Network Target Coordination for Optimal Design of Decomposed Systems With Consensus Optimization
,”
ASME
Paper No. DETC2012-70333. 10.1115/DETC2012-70333
20.
Xu
,
M.
,
Wang
,
W.
,
Guarneri
,
P.
, and
Fadel
,
G.
,
2013
, “
CADMM Applied to Hybrid Network Decomposition
,”
Proceedings of the 10th World Congress on Structural Multidisciplinary Optimization
,
Orlando, FL
, May 19–24.
21.
Han
,
J.
, and
Papalambros
,
P. Y.
,
2010
, “
A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021003
.10.1115/1.4000758
22.
DorMohammadi
,
S.
, and
Rais-Rohani
,
M.
,
2013
, “
Exponential Penalty Function Formulation for Multilevel Optimization Using the Analytical Target Cascading Framework
,”
Struct. Multidiscip. Optim.
,
47
(
4
), pp.
599
612
.10.1007/s00158-012-0861-x
23.
Wang
,
W.
,
Blouin
, V
. Y.
,
Gardenghi
,
M. K.
,
Fadel
,
G. M.
,
Wiecek
,
M. M.
, and
Sloop
,
B. C.
,
2013
, “
Cutting Plane Methods for Analytical Target Cascading With Augmented Lagrangian Coordination
,”
ASME J. Mech. Des.
,
135
(
10
), p.
104502
.10.1115/1.4024847
24.
Wang
,
W.
,
2012
, “
Network Target Coordination for Design Optimization of Decomposed Systems
,” Ph.D. thesis, Clemson University, Clemson, SC.
25.
Xu
,
M.
,
Fadel
,
G.
, and
Wiecek
,
M. M.
,
2014
, “
Dual Residual in Augmented Lagrangian Coordination for Decomposition-Based Optimization
,”
ASME
Paper No. DETC2014-35103. 10.1115/DETC2014-35103
26.
Boyd
,
S.
,
Parikh
,
N.
,
Chu
,
E.
,
Peleato
,
B.
, and
Eckstein
,
J.
,
2011
, “
Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers
,”
Found. Trends Mach. Lear.
,
3
(
1
), pp.
1
122
.10.1561/2200000016
27.
He
,
B. S.
,
Yang
,
H.
, and
Wang
,
S. L.
,
2000
, “
Alternating Direction Method With Self-Adaptive Penalty Parameters for Monotone Variational Inequalities
,”
J. Optim. Theory Appl.
,
106
(
2
), pp.
337
356
.10.1023/A:1004603514434
28.
Wang
,
S. L.
, and
Liao
,
L. Z.
,
2001
, “
Decomposition Method With a Variable Parameter for a Class of Monotone Variational Inequality Problems
,”
J. Optim. Theory Appl.
,
109
(
2
), pp.
415
429
.10.1023/A:1017522623963
29.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
,
2006
,
Nonlinear Programing: Theory and Algorithms
,
3rd ed.
,
John Wiley & Sons
, New York.
30.
MathWorks
,
2012
, “
matlab 2012a—Version 7.10.0
,” MathWorks, Inc., Natick, MA.
31.
Gardenghi
,
M.
,
Wiecek
,
M. M.
, and
Wang
,
W.
,
2013
, “
Biobjective Optimization for Analytical Target Cascading: Optimality vs. Achievability
,”
Struct. Multidiscip. Optim.
,
47
(
1
), pp.
111
133
.10.1007/s00158-012-0812-6
You do not currently have access to this content.