In designing microstructural materials systems, one of the key research questions is how to represent the microstructural design space quantitatively using a descriptor set that is sufficient yet small enough to be tractable. Existing approaches describe complex microstructures either using a small set of descriptors that lack sufficient level of details, or using generic high order microstructure functions of infinite dimensionality without explicit physical meanings. We propose a new machine learning-based method for identifying the key microstructure descriptors from vast candidates as potential microstructural design variables. With a large number of candidate microstructure descriptors collected from literature covering a wide range of microstructural material systems, a four-step machine learning-based method is developed to eliminate redundant microstructure descriptors via image analyses, to identify key microstructure descriptors based on structure–property data, and to determine the microstructure design variables. The training criteria of the supervised learning process include both microstructure correlation functions and material properties. The proposed methodology effectively reduces the infinite dimension of the microstructure design space to a small set of descriptors without a significant information loss. The benefits are demonstrated by an example of polymer nanocomposites optimization. We compare designs using key microstructure descriptors versus using empirically chosen microstructure descriptors as a demonstration of the proposed method.

References

References
1.
Li
,
Y.
,
2006
, “
Predicting Materials Properties and Behavior Using Classification and Regression Trees
,”
Mater. Sci. Eng. A
,
433
(
1–2
), pp.
261
268
.10.1016/j.msea.2006.06.100
2.
Hemanth
,
K. S.
,
Vastrad
,
C. M.
, and
Nagaraju
,
S.
,
2011
, “
Data Mining Technique for Knowledge Discovery From Engineering Materials Data Sets
,”
Advances in Computer Science and Information Technology
,
Springer
, Berlin, Heidelberg, pp.
512
522
.
3.
Broderick
,
S.
,
Suh
,
C.
,
Nowers
,
J.
,
Vogel
,
B.
,
Mallapragada
,
S.
,
Narasimhan
,
B.
, and
Rajan
,
K.
,
2008
, “
Informatics for Combinatorial Materials Science
,”
JOM
,
60
(
3
), pp.
56
59
.10.1007/s11837-008-0035-x
4.
Ashby
,
M.
,
2005
,
Materials Selection in Mechanical Design
,
Butterworth-Heinemann
,
Burlington, MA
.
5.
McDowell
,
D. L.
, and
Olson
,
G. B.
,
2008
, “
Concurrent Design of Hierarchical Materials and Structures
,”
Sci. Model. Simul.
,
15
(
1–3
), pp.
207
240
.10.1007/s10820-008-9100-6
6.
Panchal
,
J. H.
,
Kalidindi
,
S. R.
, and
McDowell
,
D. L.
,
2012
, “
Key Computational Modeling Issues in Integrated Computational Materials Engineering
,”
Comput. Aided Des.
,
45
(
1
), pp.
4
25
.10.1016/j.cad.2012.06.006
7.
Karasek
,
L.
, and
Sumita
,
M.
,
1996
, “
Characterization of Dispersion State of Filler and Polymer–Filler Interactions in Rubber Carbon Black Composites
,”
J. Mater. Sci.
,
31
(
2
), pp.
281
289
.10.1007/BF01139141
8.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer-Verlag
,
New York
.
9.
Sundararaghavan
,
V.
, and
Zabaras
,
N.
,
2005
, “
Classification and Reconstruction of Three-Dimensional Microstructures Using Support Vector Machines
,”
Comput. Mater. Sci.
,
32
(
2
), pp.
223
239
.10.1016/j.commatsci.2004.07.004
10.
Basanta
,
D.
,
Miodownik
,
M. A.
,
Holm
,
E. A.
, and
Bentley
,
P. J.
,
2005
, “
Using Genetic Algorithms to Evolve Three-Dimensional Microstructures From Two-Dimensional Micrographs
,”
Metall. Mater. Trans. A
,
36
(
7
), pp.
1643
1652
.10.1007/s11661-005-0026-2
11.
Borbely
,
A.
,
Csikor
,
F. F.
,
Zabler
,
S.
,
Cloetens
,
P.
, and
Biermann
,
H.
,
2004
, “
Three-Dimensional Characterization of the Microstructure of a Metal–Matrix Composite by Holotomography
,”
Mater. Sci. Eng. A
,
367
(
1–2
), pp.
40
50
.10.1016/j.msea.2003.09.068
12.
Yeong
,
C. L. Y.
, and
Torquato
,
S.
,
1998
, “Reconstructing Random Media,”
Phys. Rev. E
,
57
(1), p. 495.10.1103/PhysRevE.57.495
13.
Xu
,
H.
,
Li
,
Y.
,
Brinson
,
L. C.
, and
Chen
,
W.
,
2013
, “
Descriptor-Based Methodology for Designing Heterogeneous Microstructural Materials System
,”
ASME
Paper No. DETC2013-12232.10.1115/DETC2013-12232
14.
Xu
,
H.
,
Li
,
Y.
,
Brinson
,
C.
, and
Chen
,
W.
,
2014
, “
A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051007
.10.1115/1.4026649
15.
Liu
,
Y.
,
Greene
,
M. S.
,
Chen
,
W.
,
Dikin
,
D. A.
, and
Liu
,
W. K.
,
2013
, “
Computational Microstructure Characterization and Reconstruction for Stochastic Multiscale Material Design
,”
Comput. Aided Des.
,
45
(
1
), pp.
65
76
.10.1016/j.cad.2012.03.007
16.
Fullwood
,
D. T.
,
Niezgoda
,
S. R.
, and
Kalidindi
,
S. R.
,
2008
, “
Microstructure Reconstructions From 2-Point Statistics Using Phase-Recovery Algorithms
,”
Acta Mater.
,
56
(
5
), pp.
942
948
.10.1016/j.actamat.2007.10.044
17.
Vaithyanathan
,
V.
,
Wolverton
,
C.
, and
Chen
,
L. Q.
,
2002
, “
Multiscale Modeling of Precipitate Microstructure Evolution
,”
Phys. Rev. Lett.
,
88
(
12
), p.
125503
.10.1103/PhysRevLett.88.125503
18.
Xu
,
H.
,
Dikin
,
D.
,
Burkhart
,
C.
, and
Chen
,
W.
,
2014
, “
Descriptor-Based Methodology for Statistical Characterization and 3D Reconstruction for Polymer Nanocomposites
,”
Comput. Mater. Sci.
,
85
, pp.
206
216
.10.1016/j.commatsci.2013.12.046
19.
Rodgers
,
J. R.
, and
Cebon
,
D.
,
2006
, “
Materials Informatics
,”
MRS Bull.
31
(12), pp. 975–980.10.1557/mrs2006.223
20.
Ferris
,
K. F.
,
Peurrung
,
L. M.
, and
Marder
,
J.
,
2007
, “
Materials Informatics: Fast Track to New Materials
,”
Adv. Mater. Processes
,
165
(1), pp.
50
51
.
21.
Wei
,
Q. Y.
,
Peng
,
X. D.
,
Liu
,
X. G.
, and
Xie
,
W. D.
,
2006
, “
Materials Informatics and Study on Its Further Development
,”
Chin. Sci. Bull.
,
51
(
4
), pp.
498
504
.10.1007/s11434-005-0498-x
22.
Ma
,
X.
, and
Zabaras
,
N.
,
2011
, “
Kernel Principal Component Analysis for Stochastic Input Model Generation
,”
J. Comput. Phys.
,
230
(
19
), pp.
7311
7331
.10.1016/j.jcp.2011.05.037
23.
Mohri
,
M.
,
Rostamizadeh
,
A.
, and
Talwalkar
,
A.
,
2012
,
Foundations of Machine Learning
,
MIT Press
, Cambridge, MA.
24.
Doreswamy
,
2008
, “
A Survey for Data Mining Frame Work for Polymer Matrix Composite Engineering Materials Design Applications
,”
Int. J. Comput. Intell. Syst.
,
1
, pp.
313
328
.10.1080/18756891.2008.9727628
25.
Ortiz
,
C.
,
Eriksson
,
O.
, and
Klintenberg
,
M.
,
2009
, “
Data Mining and Accelerated Electronic Structure Theory as a Tool in the Search for New Functional Materials
,”
Comput. Mater. Sci.
,
44
(
4
), pp.
1042
1049
.10.1016/j.commatsci.2008.07.016
26.
Saad
,
Y.
,
Gao
,
D.
,
Ngo
,
T.
,
Bobbitt
,
S.
,
Chelikowsky
,
J. R.
, and
Andreoni
,
W.
,
2012
, “
Data Mining for Materials: Computational Experiments With AB Compounds
,”
Phys. Rev. B
,
85
(
10
), p.
104104
.10.1103/PhysRevB.85.104104
27.
Hunt
,
E. B.
,
Martin
,
J.
, and
Stone
,
P. J.
,
1996
,
Experiments in Induction
,
Academic Press
,
New York
.
28.
Breiman
,
L.
,
Friedman
,
J. H.
,
Olshen
,
R. A.
, and
Stone
,
C. J.
,
Classification and Regression Trees
,
Wadsworth Inc.
,
Belmont, CA
.
29.
Kira
,
K.
, and
Rendell
,
L. A.
,
1992
, “
The Feature-Selection Problem—Traditional Methods and a New Algorithm
,”
Proceedings of the Tenth National Conference on Artificial Intelligence
, AAAI-92, pp.
129
134
.
30.
Kononenko
,
I.
,
1994
, “
Estimating Attributes: Analysis and Extensions of Relief
,”
Machine Learning
, ECML-94,
L.
De Raedt
, and
F.
Bergadano
, eds.,
Springer Verlag
, Berlin, Heidelberg, pp.
171
182
.
31.
Robnik Sikonja
,
M.
, and
Kononenko
,
I.
,
1997
, “
An Adaptation of Relief for Attribute Estimation in Regression
,”
Machine Learning: Proceedings of the Fourteenth International Conference
(ICML’97),
D. H.
Fisher
, ed.,
Morgan Kaufmann
, San Francisco, CA, pp.
296
304
.
32.
Rollett
,
A. D.
,
Lee
,
S. B.
,
Campman
,
R.
, and
Rohrer
,
G. S.
,
2007
, “
Three-Dimensional Characterization of Microstructure by Electron Back-Scatter Diffraction
,”
Annu. Rev. Mater. Res.
,
37
, pp.
627
658
.10.1146/annurev.matsci.37.052506.084401
33.
Jean
,
A.
,
Jeulin
,
D.
,
Forest
,
S.
,
Cantournet
,
S.
, and
N'Guyen
,
F.
,
2011
, “
A Multiscale Microstructure Model of Carbon Black Distribution in Rubber
,”
J. Microsc.
,
241
(
3
), pp.
243
260
.10.1111/j.1365-2818.2010.03428.x
34.
Torquato
,
S.
,
2010
, “
Optimal Design of Heterogeneous Materials
,”
Annu. Rev. Mater. Res.
,
40
, pp.
101
129
.10.1146/annurev-matsci-070909-104517
35.
Yang
,
S.
,
Tewari
,
A.
, and
Gokhale
,
A. M.
,
1997
, “
Modeling of Non-Uniform Spatial Arrangement of Fibers in a Ceramic Matrix Composite
,”
Acta Mater.
,
45
(
7
), pp.
3059
3069
.10.1016/S1359-6454(96)00394-1
36.
Li
,
D. S.
,
Tschopp
,
M. A.
,
Khaleel
,
M.
, and
Sun
,
X.
,
2012
, “
Comparison of Reconstructed Spatial Microstructure Images Using Different Statistical Descriptors
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
437
444
.10.1016/j.commatsci.2011.07.056
37.
Tewari
,
A.
, and
Gokhale
,
A. M.
,
2004
, “
Nearest-Neighbor Distances Between Particles of Finite Size in Three-Dimensional Uniform Random Microstructures
,”
Mater. Sci. Eng. A
,
385
(
1–2
), pp.
332
341
.10.1016/j.msea.2004.06.049
38.
Steinzig
,
M.
, and
Harlow
,
F.
,
1999
, “
Probability Distribution Function Evolution for Binary Alloy Solidification
,”
Materials Society Annual Meeting
, pp.
197
206
.
39.
Thomas
,
M.
,
Boyard
,
N.
,
Perez
,
L.
,
Jarny
,
Y.
, and
Delaunay
,
D.
,
2008
, “
Representative Volume Element of Anisotropic Unidirectional Carbon–Epoxy Composite With High-Fibre Volume Fraction
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3184
3192
.10.1016/j.compscitech.2008.07.015
40.
Holotescu
,
S.
, and
Stoian
,
F. D.
,
2011
, “
Prediction of Particle Size Distribution Effects on Thermal Conductivity of Particulate Composites
,”
Materialwiss. Werkstofftech.
,
42
(
5
), pp.
379
385
.10.1002/mawe.201100792
41.
Klaysom
,
C.
,
Moon
,
S. H.
,
Ladewig
,
B. P.
,
Lu
,
G. Q. M.
, and
Wang
,
L. Z.
,
2011
, “
The Effects of Aspect Ratio of Inorganic Fillers on the Structure and Property of Composite Ion-Exchange Membranes
,”
J. Colloid Interface Sci.
,
363
(
2
), pp.
431
439
.10.1016/j.jcis.2011.07.071
42.
Gruber
,
J.
,
Rollett
,
A. D.
, and
Rohrer
,
G. S.
,
2010
, “
Misorientation Texture Development During Grain Growth. Part II: Theory
,”
Acta Mater.
,
58
(
1
), pp.
14
19
.10.1016/j.actamat.2009.08.032
43.
Ganesh
,
V. V.
, and
Chawla
,
N.
,
2005
, “
Effect of Particle Orientation Anisotropy on the Tensile Behavior of Metal Matrix Composites: Experiments and Micro Structure-Based Simulation
,”
Mater. Sci. Eng. A
,
391
(
1–2
), pp.
342
353
.10.1016/j.msea.2004.09.017
44.
Kenney
,
B.
,
Valdmanis
,
M.
,
Baker
,
C.
,
Pharoah
,
J. G.
, and
Karan
,
K.
,
2009
, “
Computation of TPB Length, Surface Area and Pore Size From Numerical Reconstruction of Composite Solid Oxide Fuel Cell Electrodes
,”
J. Power Sources
,
189
(
2
), pp.
1051
1059
.10.1016/j.jpowsour.2008.12.145
45.
Morozov
,
I. A.
,
Lauke
,
B.
, and
Heinrich
,
G.
,
2011
, “
A Novel Method of Quantitative Characterization of Filled Rubber Structures by AFM
,”
Kautsch. Gummi Kunstst.
,
64
(1–2), pp.
24
27
.
46.
Prakash
,
C. P.
,
Mytri
,
V. D.
, and
Hiremath
,
P. S.
,
2010
, “
Classification of Cast Iron Based on Graphite Grain Morphology Using Neural Network Approach
,”
Second International Conference on Digital Image Processing
, Vol.
7546
, pp. 75462S–75462S.
47.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
,
21
(
2
), pp.
112
132
.10.1016/j.probengmech.2005.07.007
48.
Deng
,
H.
,
Liu
,
Y.
,
Gai
,
D.
,
Dikin
,
D. A.
,
Putz
,
K.
,
Chen
,
W.
,
Brinsona
,
L. C.
,
Burkhart
,
C.
,
Poldneff
,
M.
,
Jiang
,
B.
, and
Papakonstantopoulos
,
G. J.
,
2012
, “
Utilizing Real and Statistically Reconstructed Microstructures for the Viscoelastic Modeling of Polymer Nanocomposites
,”
Compos. Sci. Technol.
,
72
(
14
), pp.
1725
1732
.10.1016/j.compscitech.2012.03.020
49.
Xu
,
H. Y.
,
Greene
,
M. S.
,
Deng
,
H.
,
Dikin
,
D.
,
Brinson
,
C.
,
Liu
,
W. K.
,
Burkhart
,
C.
,
Papakonstantopoulos
,
G.
,
Poldneff
,
M.
, and
Chen
,
W.
,
2013
, “
Stochastic Reassembly Strategy for Managing Information Complexity in Heterogeneous Materials Analysis and Design
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101010
.10.1115/1.4025117
50.
Zheng
,
W.
, and
Wong
,
S. C.
,
2003
, “
Electrical Conductivity and Dielectric Properties of PMMA/Expanded Graphite Composites
,”
Compos. Sci. Technol.
,
63
(
2
), pp.
225
235
.10.1016/S0266-3538(02)00201-4
51.
Cuthill
,
E.
, and
McKee
,
J.
,
1969
, “
Reducing the Bandwidth of Sparse Symmetric Matrices
,”
Proceedings of the 24th National Conference
,
ACM
, pp. 157–172.
52.
Breneman
,
C. M.
,
Brinson
,
L. C.
,
Schadler
,
L. S.
,
Natarajan
,
B.
,
Krein
,
M.
,
Wu
,
K.
,
Morkowchuk
,
L.
,
Li
,
Y.
,
Deng
,
H.
, and
Xu
,
H.
,
2013
, “
Stalking the Materials Genome: A Data-Driven Approach to the Virtual Design of Nanostructured Polymers
,”
Adv. Funct. Mater.
,
23
(
46
), pp.
5746
5752
.10.1002/adfm.201301744
53.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.10.1007/s00158-001-0160-4
You do not currently have access to this content.