The Monte Carlo simulation (MCS) can provide high reliability evaluation accuracy. However, the efficiency of the crude MCS is quite low, in large part because it is computationally expensive to evaluate a very small failure probability. In this paper, a subset simulation-based reliability analysis (SSRA) approach is combined with multidisciplinary design optimization (MDO) to improve the computational efficiency in reliability-based MDO (RBMDO) problems. Furthermore, the sequential optimization and reliability assessment (SORA) approach is utilized to decouple an RBMDO problem into a sequential of deterministic MDO and reliability evaluation problems. The formula of MDO with SSRA within the framework of SORA is proposed to solve a design optimization problem of a hydraulic transmission mechanism.

References

References
1.
Apostolakis
,
G.
,
1990
, “
The Concept of Probability in Safety Assessments of Technological Systems
,”
Science
,
250
(
4986
), pp.
1359
1364
.10.1126/science.2255906
2.
Yao
,
W.
,
Chen
,
X.
,
Ouyang
,
Q.
, and
Tooren
,
M.
,
2013
, “
A Reliability-Based Multidisciplinary Design Optimization Procedure Based on Combined Probability and Evidence Theory
,”
Struct. Multidiscip. Optim.
,
48
(
2
), pp.
339
354
.10.1007/s00158-013-0901-1
3.
Zhang
,
X. D.
,
Huang
,
H. Z.
, and
Xu
,
H. W.
,
2010
, “
Multidisciplinary Design Optimization With Discrete and Continuous Variables of Various Uncertainties
,”
Struct. Multidiscip. Optim.
,
42
(
4
), pp.
605
618
.10.1007/s00158-010-0513-y
4.
Xiao
,
N. C.
,
Huang
,
H. Z.
,
Wang
,
Z. L.
,
Liu
,
Y.
, and
Zhang
,
X. L.
,
2012
, “
Unified Uncertainty Analysis by The Mean Value First Order Saddlepoint Approximation
,”
Struct. Multidiscip. Optim.
,
46
(
6
), pp.
803
812
.10.1007/s00158-012-0794-4
5.
Sues
,
R. H.
,
Oakley
,
D. R.
, and
Rhodes
,
G. S.
,
1995
, “
Multidisciplinary Stochastic Optimization
,”
10th Conference on Engineering Mechanics
, Boulder, CO, pp.
934
937
.
6.
Zaman
,
K.
, and
Mahadevan
,
S.
,
2013
, “
Robustness-Based Design Optimization of Multidisciplinary System Under Epistemic Uncertainty
,”
AIAA J.
,
51
(
5
), pp.
1021
1031
.10.2514/1.J051372
7.
Padmanabhan
,
D.
, and
Batill
,
S. M.
,
2002
, “
Decomposition Strategies for Reliability Based Optimization in Multidisciplinary System Design
,” 9th
AIAA/USAF/NASA/ISSMO
Symposium in Multidisciplinary Analysis and Optimization,
Atlanta, GA
, pp.
77
83
.10.2514/6.2002-5471
8.
Padmanabhan
,
D.
, and
Batill
,
S. M.
,
2002
, 40th AIAA Sciences Meeting,
Reno, NY
.
9.
Du
,
X.
, and
Chen
,
W.
,
2000
, “
Concurrent Subsystem Uncertainty Analysis in Multidisciplinary Design
,” 8th
AIAA/NASA/USAF/ISSMO
Symposium on Multidisciplinary Analysis and Optimization,
Long Beach, CA
.10.2514/6.2000-4928
10.
Du
,
X.
, and
Chen
,
W.
,
2005
, “
Collaborative Reliability Analysis Under the Framework of Multidisciplinary Systems Design
,”
Optim. Eng.
,
6
(
1
), pp.
63
84
.10.1023/B:OPTE.0000048537.35387.fa
11.
Huang
,
H. Z.
,
Yu
,
H.
,
Zhang
,
X.
,
Zeng
,
S.
, and
Wang
,
Z.
,
2010
, “
Collaborative Optimization With Inverse Reliability for Multidisciplinary Systems Uncertainty Analysis
,”
Eng. Optim.
,
42
(
8
), pp.
763
773
.10.1080/03052150903443798
12.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.10.1016/j.probengmech.2004.04.003
13.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension-Reduction (EDR) Method for Sensitivity-Free Probability Analysis
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp.
13
28
.10.1007/s00158-007-0210-7
14.
Lee
,
S. H.
,
Chen
,
W.
, and
Kwak
,
B. M.
,
2009
, “
Robust Design With Arbitrary Distributions Using Gauss-Type Quadrature Formula
,”
Struct. Multidiscip. Optim.
,
39
(
3
), pp.
227
243
.10.1007/s00158-008-0328-2
15.
Du.
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
,
2008
, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
117
130
.10.1007/s00158-007-0121-7
16.
Huang
,
H. Z.
,
Zhang
,
X. D.
,
Liu
,
Y.
,
Meng
,
D. B.
, and
Wang
,
Z. L.
,
2012
, “
Enhanced Sequential Optimization and Reliability Assessment for Reliability-based Design Optimization
,”
J. Mech. Sci. Technol.
,
26
(
7
), pp.
2039
2043
.10.1007/s12206-012-0511-7
17.
Sues
,
R. H.
, and
Cesare
,
M. A.
,
2000
, “
An Innovative Framework for Reliability Based MDO
,” 41st
AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference,
Atlanta, GA
, pp.
1
8
.10.2514/6.2000-1509
18.
Nikbay
,
M.
, and
Kuru
,
M. N.
,
2013
, “
Reliability Based Multidisciplinary Optimization of Aeroelastic Systems With Structural and Aerodynamic Uncertainties
,”
J. Aircr.
,
50
(
3
), pp.
708
715
.10.2514/1.C031693
19.
Ebrahimi
,
M.
, and
Roshanian
,
J.
,
2013
, “
Latin Hypercube Sampling Applied to Reliability-Based Multidisciplinary Design Optimization of a Launch Vehicle
,”
Aerosp. Sci. Technol.
,
28
(
1
), pp.
297
304
.10.1016/j.ast.2012.11.010
20.
Meng
,
D. B.
,
Huang
,
H. Z.
,
Wang
,
Z.
,
Xiao
,
N. C.
, and
Zhang
,
X. L.
,
2014
, “
Mean-Value First-Order Saddlepoint Approximation Based Collaborative Optimization for Multidisciplinary Problems Under Aleatory Uncertainty
,”
J. Mech. Sci. Technol.
,
28
(
10
), pp.
3925
3935
.10.1007/s12206-014-0903-y
21.
Fishman
,
G. S.
,
1996
,
Monte Carlo: Concepts, Algorithms and Applications
,
Springer
,
NY
.
22.
Au
,
S.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.10.1016/S0266-8920(01)00019-4
23.
Du
,
X.
, and
Chen
,
W.
,
2000
, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.10.1115/1.1290247
24.
Huang
,
B.
, and
Du
,
X.
,
2008
, “
Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Saf.
,
93
(
2
), pp.
325
336
.10.1016/j.ress.2006.10.021
25.
Ding
,
K.
,
Zhou
,
Z.
, and
Liu
,
C.
,
1998
, “
Latin Hypercube Sampling Used in the Calculation of the Fracture Probability
,”
Reliab. Eng. Syst. Saf.
,
59
(
2
) pp.
239
242
.10.1016/S0951-8320(97)86402-2
26.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.10.1016/S0951-8320(03)00058-9
27.
Moarefzadeh
,
M. R.
, and
Melchers
,
R. E.
,
1999
, “
Directional Importance Sampling for Ill-proportioned Spaces
,”
Struct. Saf.
,
21
(
1
), pp.
1
22
.10.1016/S0167-4730(98)00023-X
28.
Dey
,
A.
, and
Mahadevan
,
S.
,
1998
, “
Ductile Structural System Reliability Analysis Using Adaptive Importance Sampling
,”
Struct. Saf.
,
20
(
2
), pp.
137
154
.10.1016/S0167-4730(97)00033-7
29.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
Selecting Probabilistic Approaches for Reliability-Based Design Optimization
,”
AIAA J.
,
42
(
1
), pp.
124
131
.10.2514/1.9036
30.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
ASCE J. Eng. Mech. Div.
,
100
(
EM1
), pp.
111
121
.
31.
Zhao
,
Y. G.
, and
Ang
,
A. H.
,
2003
, “
System Reliability Assessment by Method of Moments
,”
ASCE J. Struct. Eng.
,
129
(
10
), pp.
1341
1349
.10.1061/(ASCE)0733-9445(2003)129:10(1341)
32.
Wang
,
L.
,
Beeson
,
D.
, and
Wiggs
,
G.
,
2004
, “
Efficient and Accurate Point Estimate Method for Moments and Probability Distribution Estimation
,” 10th
AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference,
Albany, NY
.10.2514/6.2004-4359
33.
Seo
,
H. S.
, and
Kwak
,
B. M.
,
2002
, “
Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information
,”
Int. J. Prod. Res.
,
40
(
4
), pp.
931
944
.10.1080/00207540110095709
34.
Putko
,
M. M.
,
Newman
,
P. A.
,
Taylor
, III,
A. C.
, and
Green
,
L. L.
,
2002
, “
Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
60
69
.10.1115/1.1446068
35.
Breitung
,
K.
,
1984
, “
Asymptotic Approximations for Multinomial Integrals
,”
J. Eng. Mech.
,
110
(
3
), pp.
357
367
.10.1061/(ASCE)0733-9399(1984)110:3(357)
36.
Hohenbichler
,
M.
,
Gollwitzer
,
S.
,
Kruse
,
W.
, and
Rackwitz
,
R.
,
1987
, “
New Light on First- and Second-Order Reliability Methods
,”
Struct. Saf.
,
4
(
4
), pp.
267
284
.10.1016/0167-4730(87)90002-6
37.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.10.1214/aoms/1177729394
38.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
L.
,
2014
, “
Inverse Reliability Analysis for Approximated Second-Order Reliability Method Using Hessian Update
,”
ASME
Paper No. DETC2014-34581.10.1115/DETC2014-34581
39.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
An Investigation of Nonlinearity of Reliability Based Design Optimization Approaches
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
403
411
.10.1115/1.1701880
40.
Du
,
X.
, and
Sudjianto
,
A.
,
2004
, “
First-Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.10.2514/1.3877
41.
Zio
,
E.
, and
Pedroni
,
N.
,
2009
, “
Subset Simulation and Line Sampling for Advanced Monte Carlo Reliability Analysis
,”
European Safety and RELiability (ESREL) 2009 Conference
,
Prague, Czech Republic
, pp.
687
694
.
42.
Li
,
H.
,
2011
, “
Subset Simulation for Unconstrained Global Optimization
,”
Appl. Math. Modell.
,
35
(
10
), pp.
5108
5120
.10.1016/j.apm.2011.04.023
43.
Pan
,
R.
,
Zhuang
,
X.
, and
Sun
,
Q.
,
2012
, “
Product Design Optimization With Simulation-Based Reliability Analysis
,”
International Conference on Quality, Reliability, Risk, Maintenance and Safety Engineering (ICQR2MSE)
,
Chengdu, China
, pp.
1028
1032
.
44.
Au
,
S. K.
,
Ching
,
J.
, and
Beck
,
J. L.
,
2007
, “
Application of Subset Simulation Methods to Reliability Benchmark Problems
,”
Struct. Saf.
,
29
(
3
), pp.
183
193
.10.1016/j.strusafe.2006.07.008
45.
Au
,
S. K.
, and
Beck
,
J. L.
,
2003
, “
Subset Simulation and Its Application to Seismic Risk Based on Dynamic Analysis
,”
ASCE J. Eng. Mech.
,
129
(
8
), pp.
901
917
.10.1061/(ASCE)0733-9399(2003)129:8(901)
46.
Ching
,
J.
,
Beck
,
J. L.
, and
Au
,
S. K.
,
2005
, “
Hybrid Subset Simulation Method for Reliability Estimation of Dynamical Systems Subject to Stochastic Excitation
,”
Probab. Eng. Mech.
,
20
(
3
), pp.
199
214
.10.1016/j.probengmech.2004.09.001
47.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
, and
Rosenbluth
,
M. N.
,
1953
, “
Equations of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.10.1063/1.1699114
48.
Spall
,
J. C.
,
2003
, “
Estimation via Markov Chain Monte Carlo
,”
Control Syst.
,
23
(
2
), pp.
34
45
.10.1109/MCS.2003.1188770
49.
Beck
,
J. L.
, and
Au
,
S.
,
2002
, “
Bayesian Updating of Structural Models and Reliability Using Markov Chain Monte Carlo Simulation
,”
ASCE J. Eng. Mech.
,
128
(
4
), pp.
380
391
.10.1061/(ASCE)0733-9399(2002)128:4(380)
50.
Neal
,
R. M.
,
1993
, “
Probabilistic Inference Using Markov Chain Monte Carlo Methods
,” Technical Report No. CRG-TR-93-1, Department of Computer Science, University of Toronto, Toronto, Canada.
51.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
234
.10.1115/1.1649968
52.
Du
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
,
2008
, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
117
130
.10.1007/s00158-007-0121-7
You do not currently have access to this content.