An engineering design curriculum that introduces functional modeling methods is believed to enhance the ability to abstract complex systems, assist during the concept generation phase of design, and reduce design fixation. To that end, a variety of techniques for considering function during design have been proposed in the literature, yet there are a lack of validated approaches for teaching students to generate functional models and no reliable method for the assessment of functional models. This paper presents a study investigating students' ability to generate functional models during a homework assignment; the study includes three different treatment conditions: (1) students who receive only a lecture on functional modeling, (2) students who receive a lecture on functional modeling as well as a step-by-step example, and (3) students who receive a lecture, a step-by-step example, and an algorithmic approach with grammar rules. The experiment was conducted in a cornerstone, undergraduate engineering design course, and consequently, was the students' first exposure to functional modeling. To assess student generated functional models across all three conditions, an 18 question functional model scoring rubric was developed based on flow-based functional modeling standards. Use of the rubric to assess the student generated functional models resulted in high inter-rater agreement for total score. Results show that students receiving the step-by-step example perform as well as students receiving the step-by-step example and an algorithmic approach with grammar rules; both groups perform better than the lecture-only group.

References

References
1.
Voland
,
G.
,
2004
,
Engineering By Design
,
2nd ed.
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
2.
Hundal
,
M.
,
1990
, “
A Systematic Method for Developing Function Structures, Solutions and Concept Variants
,”
Mech. Mach. Theory
,
25
(
3
), pp.
243
256
.10.1016/0094-114X(90)90027-H
3.
Koller
,
R.
,
1985
,
Konstruktionslehre für den Maschinenbau (Mechanical Engineering Design)
,
Springer
,
Berlin, Germany
.
4.
Roth
,
K. H.
,
1981
, “
Foundation of Methodical Procedures in Design
,”
Des. Stud.
,
2
(
2
), pp.
107
115
.10.1016/0142-694X(81)90007-7
5.
Rodenacker
,
W.
,
1971
,
Methodisches Konstruieren (Methodical Design)
,
Springer
,
New York.
6.
Miles
,
L.
,
1972
,
Techniques of Value Analysis and Engineering
,
McGraw-Hill
,
New York.
7.
Umeda
,
Y.
,
Takeda
,
H.
,
Tomiyama
,
T.
, and
Yoshikawa
,
H.
,
1990
, “
Function, Behaviour, and Structure
,”
AIENG'90 Applications of AI in Engineering
, pp.
177
193
.
8.
Umeda
,
Y.
, and
Tomiyama
,
T.
,
1997
, “
Functional Reasoning in Design
,”
IEEE Expert Intell. Syst. Appl.
,
12
(
2
), pp.
42
48
.10.1109/64.585103
9.
Shimomura
,
Y.
,
Tanigawa
,
S.
,
Takeda
,
H.
,
Umeda
,
Y.
, and
Tomiyama
,
T.
,
1996
, “
Functional Evaluation Based on Function Content
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Irvine, CA
, pp.
1
11
.
10.
Shimomura
,
Y.
,
Yoshioka
,
M.
,
Takeda
,
H.
,
Umeda
,
Y.
, and
Tomiyama
,
T.
,
1998
, “
Representation of Design Object Based on the Functional Evolution Process Model
,”
ASME J. Mech. Des.
,
120
(
2
), pp.
221
229
.10.1115/1.2826962
11.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
(
1
), pp.
23
35
.10.1017/S0890060409000080
12.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
(
4
), pp.
26
36
.10.1609/aimag.v11i4.854
13.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function–Behaviour–Structure Framework
,”
Design Studies
,
25
(
4
), pp.
373
391
.10.1016/j.destud.2003.10.010
14.
Pahl
,
G.
,
Beitz
,
W.
,
Schulz
,
H.
, and
Jarecki
,
U.
,
2007
,
Engineering Design: A Systematic Approach
,
3rd ed.
,
Springer
,
London, UK
.
15.
Pressman
,
R. S.
,
2001
,
Software Engineering: A Practitioner's Approach
,
McGraw Hill
,
New York
.
16.
Nise
,
N. S.
,
2004
,
Control Systems Engineering
,
Wiley
,
Hoboken, NJ
.
17.
Lewis
,
P.
, and
Yang
,
C.
,
1997
,
Basic Control Systems Engineering
,
Prentice Hall
,
Upper Saddle River, NJ
.
18.
Rajan
,
J. R.
,
Stone
,
R. B.
, and
Wood
,
K. L.
,
2003
, “
Functional Modeling of Control Systems
,”
ICED ‘03, The 14th International Conference on Engineering Design
,
Stockholm, Sweden
, pp.
1
12
.
19.
Dym
,
C. L.
, and
Little
,
P.
,
2009
,
Engineering Design: A Project-Based Introduction
,
Wiley
,
Hoboken, NJ
.
20.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2004
,
Product Design and Development
,
McGraw-Hill/Irwin
,
Boston, MA
.
21.
Cross
,
N.
,
2000
,
Engineering Design Methods: Strategies for Product Design
,
Wiley
,
Chichester, UK
.
22.
Otto
,
K.
, and
Wood
,
K.
,
2001
,
Product Design: Techniques in Reverse Engineering, Systematic Design, and New Product Development
,
Prentice-Hall
,
New York.
23.
Nagel
,
R. L.
, and
Bohm
,
M.
,
2011
, “
On Teaching Funcitonality and Functional Modeling in an Engineering Curriculum
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
, pp.
625
636
.
24.
Stone
,
R.
, and
Wood
,
K.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.10.1115/1.1289637
25.
Little
,
A.
,
Wood
,
K.
, and
McAdams
,
D.
,
1997
, “
Functional Analysis: A Fundamental Empirical Study for Reverse Engineering, Benchmarking and Redesign
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Sacramento, CA
, pp.
1
21
.
26.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.10.1007/s00163-001-0008-3
27.
Szykman
,
S.
,
Racz
,
J.
, and
Sriram
,
R.
,
1999
, “
The Representation of Function in Computer-Based Design
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
, Sept. 12–15, pp. 1–14.
28.
Goel
,
A. K.
, and
Chandrasekaran
,
B.
,
1992
, “
Case-Based Design: A Task Analysis
,”
Artificial Intelligence in Engineering Design, Models of Innovative Design, Reasoning About Physical Systems, and Reasoning About Geometry
, Vol.
II
,
C.
Tong
and
S.
Duvvuru
, eds.,
Academic Press
,
San Diego, CA
, pp.
165
184
.
29.
Welch
,
R. V.
, and
Dixon
,
J. R.
,
1992
, “
Representing Function, Behavior and Structure During Conceptual Design
,”
Proceedings of the ASME International Design Engineering Technical Conferences
,
Scottsdale, AZ
, pp.
11
18
.
30.
National Institute of Standards and Technology (NIST)
,
1993
,
Integration Definition for Function Modeling (IDEF0)
,
Information Processing Standards Publications (FIPS PUBS)
.
31.
Erden
,
M. S.
,
Komoto
,
H.
,
Van Beek
,
T. J.
,
D'Amelio
,
V.
,
Echavarria
,
E.
, and
Tomiyama
,
T.
,
2008
, “
A Review of Functional Modeling: Approaches and Applications
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
147
169
.10.1017/S0890060408000103
32.
Kurfman
,
M.
,
Stone
,
R.
,
Van Wie
,
M.
,
Wood
,
K.
, and
Otto
,
K.
,
2000
, “
Theoretical Underpinnings of Functional Modeling: Preliminary Experimental Studies
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Balitmore, MD
, pp.
1
14
.
33.
Ullman
,
D. G.
,
2010
,
The Mechanical Design Process
,
4th ed.
,
McGraw-Hill
,
Boston, MA
.
34.
2001
, “
Enumeration
,”
Webster's Encyclopedic Unabridged Dictionary of the English Language
,
Random House Value Publishing, Inc
,
New York
.
35.
Borutzky
,
W.
,
2010
,
Bond Graph Methodology: Development and Analysis of Multidisciplinary Dynamic System Models
,
Spinger
,
London, UK
.
36.
Finger
,
S.
, and
Rinderle
,
J.
,
1989
, “
A Transformational Approach to Mechanical Design Using a Bond Graph Grammar
,”
ASME International Design Engineering Technical Conferences
,
Montreal, QC
, pp.
107
116
.
37.
Karnopp
,
D.
,
Margolis
,
D.
, and
Rosenberg
,
R.
,
2012
,
System Dynamics: Modeling, Simulation, and Control of Mechanical Systems
,
5th ed.
,
Wiley
,
Hoboken, NJ
.
38.
Sridharan
,
P.
, and
Campbell
,
M. I.
,
2004
, “
A Grammar for Functional Structures
,”
ASME
Paper No. DETC2004-57130.10.1115/DETC2004-57130
39.
Sridharan
,
P.
, and
Campbell
,
M. I.
,
2005
, “
A Study on the Grammatical Construction of Function Structures
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
3
), pp.
139
160
.10.1017/S0890060405050110
40.
Nagel
,
R. L.
,
Vucovich
,
J. P.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2007
, “
Signal Flow Grammar From the Functional Basis
,”
ICED ‘07, The 16th International Conference on Engineering Design
,
Paris, France
, pp.
1
10
.
41.
Nagel
,
R. L.
,
Vucovich
,
J. P.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2008
, “
A Signal Grammar to Guide Functional Modeling of Electromechanical Products
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051101
.10.1115/1.2885185
42.
Design Engineering Lab
,
2009
, “
The Design Repository @ Oregon State University
,” Accessed Jan. 4, 2014, http://repository.designengineeringlab.org
43.
Caldwell
,
B. W.
, and
Mocko
,
G. M.
,
2008
, “
Toward Rules for Functional Composition
,”
ASME
Paper No. DETC2008-49904.10.1115/DETC2008-49904
44.
Abbott
,
D. R.
, and
Lough
,
K. G.
,
2007
, “
Representing Historically Based Component–Function Relationships Through Design Templates
,”
ASME
Paper No. DETC2007-35382.10.1115/DETC2007-35382
45.
Abbott
,
D. R.
, and
Lough
,
K. G.
,
2007
, “
Component Functional Templates: A Methodical Approach
,”
ICED ‘07, The 16th International Conference on Engineering Design
,
Paris, France
, pp.
1
11
.
46.
Abbott
,
D. R.
, and
Lough
,
K. G.
,
2007
, “
Component Functional Templates as an Engineering Design Teaching Aid
,”
2007 American Society of Engineering Education Annual Conference & Exposition
,
Honolulu, HI
.
47.
Bohm
,
M.
,
Stone
,
R.
, and
Nagel
,
R.
,
2009
, “
Form Follows Form: Is a New Paradigm Needed?
,”
ASME
Paper No. IMECE2009-10410.10.1115/IMECE2009-10410
48.
Bohm
,
M. R.
, and
Stone
,
R. B.
,
2010
, “
Form Follows Form: Fine Tuning Artificial Intelligence Methods
,”
ASME
Paper No. DETC2010-28774.10.1115/DETC2010-28774
49.
Griffith
,
T. A.
,
Nersessian
,
N. J.
, and
Goel
,
A. K.
,
2000
, “
Function-Follows-Form Transformations in Scientific Problem Solving
,”
Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society
,
L. R.
Gleitman
and
A. K.
Joshi
, eds.,
Psychology Press
,
Philadelphia, PA
.
50.
Hayes
,
A. F.
, and
Krippendorff
,
K.
,
2007
, “
Answering the Call for a Standard Reliability Measure for Coding Data
,”
Commun. Methods Meas.
,
1
(
1
), pp.
77
89
.10.1080/19312450709336664
51.
Landis
,
J. R.
, and
Koch
,
G. G.
,
1977
, “
The Measurement of Observer Agreement for Categorical Data
,”
Biometrics
,
33
(
1
), pp.
159
174
.10.2307/2529310
52.
Montgomery
,
D. C.
,
2005
,
Design and Analysis of Experiments
,
6th ed.
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.