Shape-control in an architectural context is expected to provide unique opportunities for buildings with enhanced functionality, flexibility, energy performance, and occupants comfort. An architectural concept is proposed which consists of a parallel arrangement of planar n-bar mechanisms formulating its skeleton structure and a membrane material stretched over it to define the building envelope. Overall shape changes involve coordinated motion of the individual planar mechanisms. Each linkage is equipped with one motion actuator as well as brakes installed on every joint. Reconfigurations of the building are based on the “effective 4-bar (E4B)” concept allowing stepwise adjustments. Each intermediate step involves the selective locking of (n − 4) joints on each closed-loop linkage effectively reducing it to a single degrees-of-freedom (DOF) 4-bar mechanism, the configuration of which can be adjusted using the available motion actuator. A reconfiguration of the mechanism can be realized through alternative control sequences and an optimal one can be selected based on specific criteria. The paper reports the fundamental design and control concepts. A simulation and an experimental study are presented to demonstrate the implementation of the general reconfiguration approach and examine relevant issues.

References

References
1.
d'Estée Sterk
,
T.
,
2006
, “
Shape Control in Responsive Architectural Structures-Current Reasons and Challenges
,”
Fourth World Conference on Structural Control and Monitoring
, pp.
1
8
.
2.
Kirkegaard
,
P.
, and
Foged
,
I. W.
,
2010
, “
Development and Evaluation of a Responsive Building Envelope
,”
International Adaptive Architecture Conference
, pp.
1
9
.
3.
Christoforou
,
E.
,
Müller
,
A.
, and
Phocas
,
M.
,
2012
, “
Motion Planning for Shape-Controlled Adaptable Buildings Resembling Topologically Closed-Loop Robotic Systems
,”
ASME
Paper No. DETC2012-70177. 10.1115/DETC2012-70177
4.
Christoforou
,
E.
,
Müller
,
A.
,
Phocas
,
M.
,
Matheou
,
M.
, and
Arnos
,
S.
,
2013
, “
Towards Realization of Shape-Controlled Adaptable Buildings Following a Robotics Approach
,”
ASME
Paper No. DETC2013-12885.10.1115/DETC2013-12885
5.
Miura
,
K.
, and
Furuya
,
H.
,
1985
, “
Variable Geometry Truss and Its Application to Deployable Truss and Space Crane Arms
,”
Acta Astronaut.
,
12
(
7
), pp.
599
607
.10.1016/0094-5765(85)90131-6
6.
Harada
,
K.
,
Susilo
,
E.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2009
, “
Wireless Reconfigurable Modules for Robotic Endoluminal Surgery
,”
IEEE
International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
2699
2704
.10.1109/ROBOT.2009.5152636
7.
An
,
B.
, and
Rus
,
D.
,
2012
, “
Programming and Controlling Self-Folding Robots
,”
IEEE
International Conference on Robotics and Automation
, Saint Paul, MN, May 14–18, pp.
3299
3306
.10.1109/ICRA.2012.6224789
8.
Gao
,
W.
,
Ramani
,
K.
,
Cipra
,
R.
, and
Siegmund
,
T.
,
2013
, “
Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111009
.10.1115/1.4025506
9.
Ding
,
X.
, and
Yang
,
Y.
,
2010
, “
Reconfiguration Theory of Mechanism From a Traditional Artifact
,”
ASME J. Mech. Des.
,
132
(
11
), p.
114501
.10.1115/1.4002692
10.
Jin
,
Y.
, and
Hai-Rong
,
F.
,
1995
, “
Forward Displacement Analysis of the Decahedral Variable Geometry Truss Manipulator
,”
Rob. Auton. Syst.
,
15
(
3
), pp.
173
178
.10.1016/0921-8890(95)00025-B
11.
Keizo
,
M.
, and
Chirikjian
,
G.
,
2006
, “
General Kinematic Synthesis Method for a Discretely Actuated Robot Manipulator (D-ARM)
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
5889
5894
.10.1109/IROS.2006.282467
12.
Sastra
,
J.
,
Chitta
,
S.
, and
Yim
,
M.
,
2009
, “
Dynamic Rolling for a Modular Loop Robot
,”
Int. J. Rob. Res.
,
28
(
6
), pp.
758
773
.10.1177/0278364908099463
13.
Kotay
,
K.
, and
Rus
,
D.
,
2005
, “
Efficient Locomotion for a Self-Reconfiguring Robot
,”
IEEE
International Conference on Robotics and Automation
, Apr. 18–22, pp.
2974
2980
.10.1109/ROBOT.2005.1570564
14.
Paul
,
C.
, and
Valero-Cuevas
,
F.
,
2006
, “
Design and Control of Tensegrity Robots for Locomotion
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
944
957
.10.1109/TRO.2006.878980
15.
Shibata
,
M.
,
Saijyo
,
F.
, and
Hirai
,
S.
,
2009
, “
Crawling by Body Deformation of Tensegrity Structure Robots
,”
IEEE
International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
4375
4380
.10.1109/ROBOT.2009.5152752
16.
Stoy
,
K.
,
Brandt
,
D.
, and
Christensen
,
D.
,
2010
,
Self-Reconfigurable Robots
,
The MIT Press, Cambridge, MA.
17.
Suzuki
,
Y.
,
Inou
,
N.
,
Kimura
,
H.
, and
Koseki
,
M.
,
2007
, “
Reconfigurable Group Robots Adaptively Transforming a Mechanical Structure
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Nice, France, pp.
2361
2367
.
18.
Lee
,
W.
, and
Sanderson
,
A.
,
2001
, “
Dynamic Analysis and Distributed Control of the Tetrobot Modular Reconfigurable Robotic System
,”
Auton. Robots
,
10
(
1
), pp.
67
82
.10.1023/A:1026548520006
19.
Stoy
,
K.
,
Shen
,
W.-M.
, and
Will
,
P.
,
2003
, “
A Simple Approach to the Control of Locomotion in Self-Reconfigurable Robots
,”
Rob. Auton. Syst.
,
44
(
3–4
), pp.
191
199
.10.1016/S0921-8890(03)00069-1
20.
Mohamed
,
R.
,
Xi
,
F.
, and
Finistauri
,
A.
,
2010
, “
Module-Based Static Structural Design of a Modular Reconfigurable Robot
,”
ASME J. Mech. Des.
,
132
(
1
), p.
014501
.10.1115/1.4000639
21.
Finistauri
,
A.
, and
Xi
,
F.
,
2013
, “
Reconfiguration Analysis of a Fully Reconfigurable Parallel Robot
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041002
.10.1115/1.4024734
22.
Choi
,
J.-K.
,
Omata
,
T.
, and
Mori
,
O.
,
2004
, “
Self-Reconfigurable Planar Parallel Robot
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Sept. 28–Oct. 2, pp.
2654
2660
.10.1109/IROS.2004.1389809
23.
Dai
,
J.
, and
Jones
,
J.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
.10.1115/1.1866159
24.
Lan
,
Z.
, and
Du
,
R.
,
2008
, “
Representation of Topological Changes in Metamorphic Mechanisms With Matrices of the Same Dimension
,”
ASME J. Mech. Des.
,
130
(
7
), p.
074501
.10.1115/1.2918917
25.
Zhang
,
H.
,
Deng
,
Z.
,
Wang
,
W.
,
Zhang
,
J.
, and
Zong
,
G.
,
2006
, “
Locomotion Capabilities of a Novel Reconfigurable Robot With 3 DOF Active Joints for Rugged Terrain
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
5588
5593
.10.1109/IROS.2006.282278
26.
Murata
,
S.
, and
Kurokawa
,
H.
,
2007
, “
Self-Reconfigurable Robots
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
71
78
.10.1109/MRA.2007.339607
27.
Norton
,
R.
,
2008
,
Design of Machinery
,
4th ed.
,
McGraw-Hill
, New York.
28.
Zlatanov
,
D.
,
Fenton
,
R.
, and
Benhabib
,
B.
,
1998
, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
,
33
(
6
), pp.
743
760
.10.1016/S0094-114X(97)00053-0
29.
Yim
,
M.
,
Duff
,
D.
, and
Zhang
,
Y.
,
2001
, “
Closed-Chain Motion With Large Mechanical Advantage
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Maui, HI, pp.
318
323
.10.1109/IROS.2001.973377
30.
Kieffer
,
J.
, and
Lenarcic
,
J.
,
1994
, “
On the Exploitation of Mechanical Advantage Near Robot Singularities
,”
Informatica
,
18
(
3
), pp.
315
323
.
You do not currently have access to this content.