This work presents an optimization approach for the robust design of six degrees of freedom (DOF) haptic devices. Our objective is to find the optimal values for a set of design parameters that maximize the kinematic, dynamic, and kinetostatic performances of a 6-DOF haptic device while minimizing its sensitivity to variations in manufacturing tolerances. Because performance indices differ in magnitude, the formulation of an objective function for multicriteria performance requirements is complex. A new approach based on Monte Carlo simulation (MCS) was used to find the extreme values (minimum and maximum) of the performance indices to enable normalization of these indices. The optimization approach presented here is formulated as a methodology in which a hybrid design-optimization approach, combining genetic algorithm (GA) and MCS, is first used. This new approach can find the numerical values of the design parameters that are both optimal and robust (i.e., less sensitive to variation and thus to uncertainties in the design parameters). In the following step, with design optimization, a set of optimum tolerances is determined that minimizes manufacturing cost and also satisfies the allowed variations in the performance indices. The presented approach can thus enable the designer to evaluate trade-offs between allowed performance variations and tolerances cost.

References

References
1.
Lou
,
Y.
,
Liu
,
G.
, and
Li
,
Z.
,
2008
, “
Randomized Optimal Design of Parallel Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
2
), pp.
223
233
10.1109/TASE.2007.909446.
2.
Zhang
,
P.
,
Yao
,
Z.
, and
Du
,
Z.
,
2013
, “
Global Performance Index System for Kinematic Optimization of Robotic Mechanism
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031001
.10.1115/1.4026031
3.
Liu
,
X.-J.
,
Jin
,
Z.-L.
, and
Gao
,
F.
,
2000
, “
Optimum Design of 3-DOF Spherical Parallel Manipulators With Respect to the Conditioning and Stiffness Indices
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1257
1267
.10.1016/S0094-114X(99)00072-5
4.
Su
,
Y.
,
Duan
,
B.
, and
Zheng
,
C.
,
2001
, “
Genetic Design of Kinematically Optimal Fine Tuning Stewart Platform for Large Spherical Radio Telescope
,”
Mechatronics
,
11
(
7
), pp.
821
835
.10.1016/S0957-4158(00)00041-6
5.
Zhang
,
Y.
, and
Yao
,
Y.
,
2006
, “
Kinematic Optimal Design of 6-ups Parallel Manipulator
,”
Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, Henan, June 25–28,
IEEE
,
New York
, pp.
2341
2345
.10.1109/ICMA.2006.257697
6.
Ottaviano
,
E.
, and
Ceccarelli
,
M.
,
2002
, “
Optimal Design of Capaman (Cassino Parallel Manipulator) With a Specified Orientation Workspace
,”
Robotica
,
20
(
2
), pp.
159
166
10.1017/S026357470100385X.
7.
Boudreau
,
R.
, and
Gosselin
,
C. M.
,
2001
, “
La synthèse d'une plate-forme de Gough–Stewart pour un espace atteignable prescript
,”
Mech. Mach. Theory
,
36
(
3
), pp.
327
342
.10.1016/S0094-114X(00)00047-1
8.
Miller
,
K.
,
2004
, “
Optimal Design and Modeling of Spatial Parallel Manipulators
,”
Int. J. Rob. Res.
,
23
(
2
), pp.
127
140
.10.1177/0278364904041322
9.
Lee
,
L.-F.
,
Narayanan
,
M. S.
,
Mendel
,
F.
,
Krovi
,
V. N.
, and
Karam
,
P.
,
2010
, “
Kinematics Analysis of In-Parallel 5-DOF Haptic Device
,” 2010
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM), Montreal, Canada, July 6–9, IEEE,
New York
, pp.
237
241
.10.1109/AIM.2010.5695908
10.
Cruz-Valverde
,
C.
,
Dominguez-Ramirez
,
O. A.
,
Ponce-de León-Sánchez
,
E. R.
,
Trejo-Mota
,
I.
, and
Sepúlveda-Cervantes
,
G.
,
2010
, “
Kinematic and Dynamic Modeling of the Phantom Premium 1.0 Haptic Device: Experimental Validation
,”
Proceedings of the Electronics, Robotics and Automotive Mechanics Conference
(
CERMA
), Morelos, Sept. 28–Oct. 1, IEEE,
New York
, pp.
494
501
.10.1109/CERMA.2010.119
11.
Lee
,
J. H.
,
Eom
,
K. S.
, and
Suh
,
I. I.
,
2001
, “
Design of a New 6-DOF Parallel Haptic Device
,”
Proceedings of the 2001
ICRA
, IEEE International Conference on Robotics and Automation, IEEE,
New York
, Vol. 1, pp.
886
891
.10.1109/ROBOT.2001.932662
12.
Cui
,
H.
,
Zhu
,
Z.
,
Gan
,
Z.
, and
Brogardh
,
T.
,
2005
, “
Kinematic Analysis and Error Modeling of TAU Parallel Robot
,”
Rob. Comput. Integr. Manuf.
,
21
(
6
), pp.
497
505
.10.1016/j.rcim.2004.07.018
13.
Zhu
,
Z.
,
Li
,
J.
,
Gan
,
Z.
, and
Zhang
,
H.
,
2005
, “
Kinematic and Dynamic Modelling for Real-Time Control of TAU Parallel Robot
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1051
1067
.10.1016/j.mechmachtheory.2004.12.024
14.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
,
1998
, “
A Newton–Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1135
1152
.10.1016/S0094-114X(97)00118-3
15.
Abdellatif
,
H.
, and
Heimann
,
B.
,
2009
, “
Computational Efficient Inverse Dynamics of 6-DOF Fully Parallel Manipulators by Using the Lagrangian Formalism
,”
Mech. Mach. Theory
,
44
(
1
), pp.
192
207
.10.1016/j.mechmachtheory.2008.02.003
16.
Tsai
,
L.-W.
,
2000
, “
Solving the Inverse Dynamics of a Stewart–Gough Manipulator by the Principle of Virtual Work
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
3
9
.10.1115/1.533540
17.
Mendes Lopes
,
A.
, and
Almeida
,
F.
,
2009
, “
The Generalized Momentum Approach to the Dynamic Modeling of a 6-DOF Parallel Manipulator
,”
Multibody Syst. Dyn.
,
21
(
2
), pp.
123
146
.10.1007/s11044-008-9131-5
18.
Nguyen
,
C. C.
, and
Pooran
,
F. J.
,
1989
, “
Dynamic Analysis of a 6-DOF CKCM Robot End-Effector for Dual-Arm Telerobot Systems
,”
Rob. Auton. Syst.
,
5
(
4
), pp.
377
394
.10.1016/0921-8890(89)90022-5
19.
Ahmadi
,
M.
,
Dehghani
,
M.
,
Eghtesad
,
M.
, and
Khayatian
,
A. R.
,
2008
, “
Inverse Dynamics of Hexa Parallel Robot Using Lagrangian Dynamics Formulation
,” Proceedings of the
INES
2008, International Conference on Intelligent Engineering Systems, Miami, FL, Feb. 25–29, IEEE
,
New York
, pp.
145
149
.10.1109/INES.2008.4481284
20.
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2009
, “
Nonlinear Effects in Stiffness Modeling of Robotic Manipulators
,” In Proceedings of International Conference on Computer and Automation Technology, pp.
168
173
.
21.
Ur-Rehman
,
R.
,
Caro
,
S.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2010
, “
Multi-Objective Path Placement Optimization of Parallel Kinematics Machines Based on Energy Consumption, Shaking Forces and Maximum Actuator Torques: Application to the Orthoglide
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1125
1141
.10.1016/j.mechmachtheory.2010.03.008
22.
Zang
,
C.
,
Friswell
,
M.
, and
Mottershead
,
J.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(
4
), pp.
315
326
.10.1016/j.compstruc.2004.10.007
23.
Tannous
,
M.
,
Caro
,
S.
, and
Goldsztejn
,
A.
,
2014
, “
Sensitivity Analysis of Parallel Manipulators Using an Interval Linearization Method
,”
Mech. Mach. Theory
,
71
, pp.
93
114
.10.1016/j.mechmachtheory.2013.09.004
24.
Caro
,
S.
,
Binaud
,
N.
, and
Wenger
,
P.
,
2009
, “
Sensitivity Analysis of 3-RPR Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
131
(
12
), p.
121005
.10.1115/1.4000216
25.
Caro
,
S.
,
Wenger
,
P.
,
Bennis
,
F.
, and
Chablat
,
D.
,
2006
, “
Sensitivity Analysis of the Orthoglide: A Three-DOF Translational Parallel Kinematic Machine
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
392
402
.10.1115/1.2166852
26.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
,
1993
, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
74
80
.10.1115/1.2919328
27.
Du
,
X.
,
Venigella
,
P. K.
, and
Liu
,
D.
,
2009
, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
.10.1016/j.mechmachtheory.2008.10.003
28.
Phadke
,
M. S.
,
1995
,
Quality Engineering Using Robust Design
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
29.
Chen
,
W.
, and
Lewis
,
K.
,
1999
, “
Robust Design Approach for Achieving Flexibility in Multidisciplinary Design
,”
AIAA J.
,
37
(
8
), pp.
982
989
.10.2514/2.805
30.
Caro
,
S.
,
Bennis
,
F.
, and
Wenger
,
P.
,
2005
, “
Tolerance Synthesis of Mechanisms: A Robust Design Approach
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
86
94
.10.1115/1.1825047
31.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization: A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33
), pp.
3190
3218
.10.1016/j.cma.2007.03.003
32.
Zhang
,
C. C.
, and
Wang
,
H.-P. B.
,
1997
, “
Robust Design of Assembly and Machining Tolerance Allocations
,”
IIE Trans.
,
30
(
1
), pp.
17
29
.10.1023/A:1007437427523
33.
Li
,
M.
,
Azarm
,
S.
, and
Aute
,
V.
,
2005
, “
A Multi-Objective Genetic Algorithm for Robust Design Optimization
,”
Proceedings of the 2005 Conference on Genetic and Evolutionary Computation
, ACM, New York, pp.
771
778
.
10.1145/1068009.1068140
34.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.10.1177/027836499201100605
35.
Gao
,
F.
, and
Gruver
,
W. A.
,
1997
, “
Performance Evaluation Criteria for Analysis and Design of Robotic Specimens
,” Proceedings of the
ICAR'97
,
8th International Conference on Advanced Robotics, Monterey, CA, July 7–9, IEEE
,
New York
, pp.
879
884
.10.1109/ICAR.1997.620285
36.
Asada
,
H.
,
1984
, “
Dynamic Analysis and Design of Robot Manipulators Using Inertia Ellipsoids
,”
Proceedings of the 1984 IEEE International Conference on Robotics and Automation
, IEEE,
New York
, Vol.
1
, pp.
94
102
.10.1109/ROBOT.1984.1087211
37.
Menon
,
C.
,
Vertechy
,
R.
,
Markót
,
M. C.
, and
Parenti-Castelli
,
V.
,
2009
, “
Geometrical Optimization of Parallel Mechanisms Based on Natural Frequency Evaluation: Application to a Spherical Mechanism for Future Space Applications
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
12
24
.10.1109/TRO.2008.2008744
38.
Lee
,
J. H.
,
Yi
,
B.-J.
,
Oh
,
S.-R.
, and
Suh
,
I. H.
,
1998
, “
Optimal Design of a Five-Bar Finger With Redundant Actuation
,”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation
, IEEE,
New York
, Vol.
3
, pp.
2068
2074
.
39.
Park
,
G.-J.
,
Lee
,
T.-H.
,
Lee
,
K. H.
, and
Hwang
,
K.-H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.10.2514/1.13639
40.
Han
,
J. S.
, and
Kwak
,
B. M.
,
2001
, “
Robust Optimal Design of a Vibratory Microgyroscope Considering Fabrication Errors
,”
J. Micromech. Microeng.
,
11
(
6
), pp.
662
671
.10.1088/0960-1317/11/6/307
41.
Chase
,
K. W.
,
Greenwood
,
W. H.
,
Loosli
,
B. G.
, and
Hauglund
,
L. F.
,
1990
, “
Least Cost Tolerance Allocation for Mechanical Assemblies With Automated Process Selection
,”
Manuf. Rev.
,
3
(
1
), pp.
49
59
.10.1.1.39.5463
42.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley-Interscience
,
New York
.
43.
Ahmad
,
A.
,
Andersson
,
K.
,
Sellgren
,
U.
, and
Khan
,
S.
,
2012
, “
A Stiffness Modeling Methodology for Simulation-Driven Design of Haptic Devices
,”
Eng. Comput.
30
(
1
), pp.
125
141
.10.1007/s00366-012-0296-4
You do not currently have access to this content.