Changeable manufacturing systems offer a high level of adaptability and agility in response to product and market changes. They are characterized by modularity and scalability, which are derivatives of system granularity. Determining the best granularity level of a changeable system helps maximize its ability to change throughout its planned utilization horizon. A new model and two case studies are presented to show: (1) new changeability design structure matrix (CDSM) to express all planned system configurations, (2) cladistics analysis to hierarchically cluster CDSM into component modules, and (3) new granularity index (GI) to determine the best system granularity level which balances the merits of manufacturing system modularity with integration.

References

References
1.
ElMaraghy
,
H.
, and
Wiendahl
,
H.-P.
,
2009
, “
Changeability—An Introduction
,”
Changeable and Reconfigurable Manufacturing Systems
,
H.
ElMaraghy
, ed.,
Springer
,
London, UK
.
2.
Wiendahl
,
H.-P.
,
ElMaraghy
,
H. A.
,
Nyhuis
,
P.
,
Zaeh
,
M.
,
Wiendahl
,
H.-H.
,
Duffie
,
N.
, and
Kolakowski
,
M.
,
2007
, “
Changeable Manufacturing: Classification, Design, Operation
,”
Keynote Paper, CIRP Ann.
,
56
(
2
), pp.
783
809
.10.1016/j.cirp.2007.10.003
3.
Tolio
,
T.
,
Ceglarek
,
D.
,
ElMaraghy
,
H. A.
,
Fischer
,
A.
,
Hu
,
S. J.
,
Laperriere
,
L.
,
Newman
,
S. T.
, and
Vancza
,
J.
,
2010
, “
Species-Co-Evolution of Products, Processes and Production Systems
,”
CIRP Ann.
,
59
(
1
), pp.
672
693
.10.1016/j.cirp.2010.05.008
4.
Koren
,
Y.
, and
Ulsoy
,
G.
,
2002
, “
Reconfigurable Manufacturing System Having a Method for Changing its Production Capacity
,” U.S. Patent No. 6,349,237.
5.
ElMaraghy
,
H.
,
2005
, “
Flexible and Reconfigurable Manufacturing Systems Paradigms
,”
Int. J. Flexible Manuf. Syst.
,
17
(
4
), pp.
261
276
.10.1007/s10696-006-9028-7
6.
Moon
,
Y.
, and
Kota
,
S.
,
2002
, “
Generalized Kinematic Modeling of Reconfigurable Machine Tools
,”
ASME J. Mech. Des.
,
124
(
1
), pp.
47
51
.10.1115/1.1424892
7.
Spicer
,
P.
,
Yip-Hoi
,
D.
, and
Koren
,
Y.
,
2005
, “
Scalable Reconfigurable Equipment Design Principles
,”
Int. J. Prod. Res.
,
43
(
22
), pp.
4839
4852
.10.1080/00268970500183042
8.
Katz
,
R.
,
2007
, “
Design Principles of Reconfigurable Machines
,”
Int. J. Adv. Manuf. Technol.
,
34
(
5–6
), pp.
430
439
.10.1007/s00170-006-0615-2
9.
Abele
,
E.
,
Wörn
,
A.
,
Fleischer
,
J.
,
Wieser
,
J.
,
Martin
,
P.
, and
Klöpper
,
R.
,
2007
, “
Mechanical Module Interfaces for Reconfigurable Machine Tools
,”
Prod. Eng.
,
1
(
4
), pp.
421
428
.10.1007/s11740-007-0057-1
10.
Milutinovic
,
D.
,
Glavonjic
,
M.
,
Slavkovic
,
N.
,
Dimic
,
Z.
,
Zivanovic
,
S.
,
Kokotovic
,
B.
, and
Tanovic
,
L.
,
2011
, “
Reconfigurable Robotic Machining System Controlled and Programmed in a Machine Tool Manner
,”
Int. J. Adv. Manuf. Technol.
,
53
(
9–12
), pp.
1217
1229
.10.1007/s00170-010-2888-8
11.
Djuric
,
A.
,
Al Saidi
,
R.
, and
ElMaraghy
,
W.
,
2012
, “
Dynamics Solution of n-DOF Global Machinery Model
,”
Rob. Comput. Integr. Manuf.
,
28
(
5
), pp.
621
630
.10.1016/j.rcim.2012.02.011
12.
Mori
,
M.
, and
Fujishima
,
M.
,
2009
, “
Reconfigurable Machine Tools for a Flexible Manufacturing System
,”
Changeable and Reconfigurable Manufacturing Systems
,
H.
ElMaraghy
, ed.,
Springer
,
London, UK
.
13.
Pritschow
,
G.
, and
Kramer
,
C.
,
2005
, “
Open System Architecture for Drives
,”
CIRP Ann.
,
54
(
1
), pp.
375
378
.10.1016/S0007-8506(07)60126-7
14.
Bryan
,
A.
,
Wang
,
H.
, and
Abell
,
J.
,
2013
, “
Concurrent Design of Product Families and Reconfigurable Assembly Systems
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051001
.10.1115/1.4023920
15.
Deif
,
A. M.
, and
ElMaraghy
,
W.
,
2006
, “
Investigating Optimal Capacity Scalability Scheduling in Reconfigurable Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
32
(
5–6
), pp.
1
6
.
16.
Youssef
,
A. M.
, and
ElMaraghy
,
H. A.
,
2007
, “
Optimal Configuration Selection for Reconfigurable Manufacturing Systems
,”
Int. J. Flexible Manuf. Syst.
,
19
(
2
), pp.
67
106
.10.1007/s10696-007-9020-x
17.
Azab
,
A.
,
ElMaraghy
,
H.
,
Nyhuis
,
P.
,
Pachow-Frauenhofer
,
J.
, and
Schmidt
,
M.
,
2013
, “
Mechanics of Change: A Framework to Reconfigure Manufacturing Systems
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
2
), pp.
110
119
.10.1016/j.cirpj.2012.12.002
18.
Deif
,
A. M.
, and
ElMaraghy
,
H. A.
,
2007
, “
Assessing Capacity Scalability Policies in RMS Using System Dynamics
,”
Int. J. Flexible Manuf. Syst.
,
19
(
3
), pp.
128
150
.10.1007/s10696-008-9031-2
19.
Youssef
,
A. M. A.
, and
ElMaraghy
,
H. A.
,
2006
, “
Assessment Manufacturing Systems Reconfiguration Smoothness
,”
Int. J. Adv. Manuf. Technol.
,
30
(
1–2
), pp.
174
193
.10.1007/s00170-005-0034-9
20.
Malhotra
,
V.
,
Raj
,
T.
, and
Arora
,
A.
,
2012
, “
Evaluation of Barriers Affecting Reconfigurable Manufacturing Systems With Graph Theory and Matrix Approach
,”
Mater. Manuf. Processes
,
27
(
1
), pp.
88
94
.10.1080/10426914.2011.551963
21.
Kuzgunkaya
,
O.
, and
ElMaraghy
,
H. A.
,
2007
, “
Economic and Strategic Perspectives on Investing in RMS and FMS
,”
Int. J. Flexible Manuf. Syst.
,
19
(
3
), pp.
217
246
.10.1007/s10696-008-9038-8
22.
ElMaraghy
,
H. A.
,
Kuzgunkaya
,
O.
, and
Urbanic
,
R. J.
,
2005
, “
Manufacturing Systems Configuration Complexity
,”
CIRP Ann.
,
54
(
1
), pp.
445
450
.10.1016/S0007-8506(07)60141-3
23.
Covanich
,
W.
, and
Mcfarlane
,
D.
,
2009
, “
Assessing Ease of Reconfiguration of Conventional and Holonic Manufacturing Systems: Approach and Case Study
,”
Eng. Appl. Artif. Intell.
,
22
(
7
), pp.
1015
1024
.10.1016/j.engappai.2009.01.001
24.
Maier-Speredelozzi
,
V.
,
Koren
,
Y.
, and
Hu
,
S. J.
,
2003
, “
Convertibility Measures for Manufacturing Systems
,”
CIRP Ann.
,
52
(
1
), pp.
367
370
.10.1016/S0007-8506(07)60603-9
25.
Gumasta
,
K.
,
Gupta
,
S. K.
,
Benyoucef
,
L.
, and
Tiwari
,
M. K.
,
2011
, “
Developing a Reconfigurability Index Using Multi-Attribute Utility Theory
,”
Int. J. Prod. Res.
,
49
(
6
), pp.
1669
1683
.10.1080/00207540903555536
26.
Chiriac
,
N.
,
Holtta-Otto
,
K.
,
Lysy
,
D.
, and
Eun Suk
,
S.
,
2011
, “
Level of Modularity and Different Levels of System Granularity
,”
ASME J. Mech. Des.
,
133
(
10
), pp.
329
339
.10.1115/1.4005069
27.
ElMaraghy
,
W.
,
ElMaraghy
,
H.
,
Tomiyama
,
T.
, and
Monostori
,
L.
,
2012
, “
Complexity in Engineering Design and Manufacturing
,”
CIRP Ann.
,
61
(
2
), pp.
793
814
.10.1016/j.cirp.2012.05.001
28.
ElMaraghy
,
H.
,
2009
, “
Changing and Evolving Products and Systems—Models and Enablers
,”
Changeable and Reconfigurable Manufacturing Systems
, Chap. 2,
H.
ElMaraghy
, ed.,
Springer
,
London, UK
.
29.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications, Engineering Systems
,
MIT Press
,
Cambridge, MA
.
30.
Thebeau
,
R. E.
,
2001
, “
Knowledge Management of System Interfaces and Interactions for Product Development Processes
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
31.
Tian-Li
,
Y.
,
Yassine
,
A. A.
, and
Goldberg
,
D. E.
,
2007
, “
An Information Theoretic Method for Developing Modular Architectures Using Genetic AlGorithms
,”
Res. Eng. Des.
,
18
(
2
), pp.
91
109
.10.1007/s00163-007-0030-1
32.
Van Beek
,
T. J.
,
Erden
,
M. S.
, and
Tomiyama
,
T.
,
2010
, “
Modular Design of Mechatronic Systems With Function Modeling
,”
Mechatronics
,
20
(
8
), pp.
850
863
.10.1016/j.mechatronics.2010.02.002
33.
Pandremenos
,
J.
, and
Chryssolouris
,
G.
,
2011
, “
A Neural Network Approach for the Development of Modular Product Architectures
,”
Int. J. Comput. Integr. Manuf.
,
24
(
10
), pp.
879
887
.10.1080/0951192X.2011.602361
34.
AlGeddawy
,
T.
, and
ElMaraghy
,
H.
,
2013
, “
Optimum Granularity Level of Modular Product Design Architecture
,”
CIRP Ann.
,
62
(
1
), pp.
151
154
.10.1016/j.cirp.2013.03.118
35.
Mccarthy
,
I.
,
1995
, “
Manufacturing Classification: Lessons From Organizational Systematics and Biological Taxonomy
,”
Integr. Manuf. Syst.
,
6
(
6
), pp.
37
48
.10.1108/09576069510099365
36.
Rose-Anderssen
,
C.
,
Baldwin
,
J.
,
Ridgway
,
K.
,
Allen
,
P.
,
Varga
,
L.
, and
Strathern
,
M.
,
2009
, “
A Cladistic Classification of Commercial Aerospace Supply Chain Evolution
,”
J. Manuf. Technol. Manage.
,
20
(
2
), pp.
235
257
.10.1108/17410380910929646
37.
ElMaraghy
,
H.
,
AlGeddawy
,
T.
, and
Azab
,
A.
,
2008
, “
Modelling Evolution in Manufacturing: A Biological Analogy
,”
CIRP Ann.
,
57
(
1
), pp.
467
472
.10.1016/j.cirp.2008.03.136
38.
ElMaraghy
,
H.
, and
AlGeddawy
,
T.
,
2012
, “
New Dependency Model and Biological Analogy for Integrating Product Design for Variety With Market Requirements
,”
J. Eng. Des.
,
23
(
10–11
), pp.
719
742
.10.1080/09544828.2012.709607
39.
Hennig
,
W.
,
1966
,
Phylogenitic Systematics
,
University of Illinois Press
,
Urbana, IL
.
40.
ElMaraghy
,
H.
, and
AlGeddawy
,
T.
,
2014
, “
Cladistics for Products and Manufacturing
,”
Cirp Encyclopedia of Production Engineering
,
Springer
,
Berlin, Germany
, p.
194
.
41.
Seiki
,
M.
,
2012
, “
The Seiki Co. Catalogue,
” Kariya, Japan.
42.
ElMaraghy
,
H.
,
AlGeddawy
,
T.
,
Azab
,
A.
, and
ElMaraghy
,
W.
,
2011
,
Change in Manufacturing—Research and Industrial Challenges
, H. ElMaraghy, ed., Springer Berlin Heidelberg, Montreal, Canada, pp.
2
9
.
You do not currently have access to this content.