Interval is an alternative to probability distribution in quantifying uncertainty for sensitivity analysis (SA) when there is a lack of data to fit a distribution with good confidence. It only requires the information of lower and upper bounds. Analytical relations among design parameters, design variables, and target performances under uncertainty can be modeled as interval-valued constraints. By incorporating logic quantifiers, quantified constraint satisfaction problems (QCSPs) can integrate semantics and engineering intent in mathematical relations for engineering design. In this paper, a global sensitivity analysis (GSA) method is developed for feasible design space searching problems that are formulated as QCSPs, where the effects of value variations and quantifier changes for design parameters on target performances are analyzed based on several proposed metrics, including the indeterminacy of target performances, information gain of parameter variations, and infeasibility of constraints. Three examples are used to demonstrate the proposed approach.

References

References
1.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
,
Wiley
,
New York
.
2.
Millwater
,
H.
, and
Feng
,
Y.
,
2011
, “
Probabilistic Sensitivity Analysis With Respect to Bounds of Truncated Distributions
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061001
.10.1115/1.4003819
3.
Caro
,
S.
,
Wenger
,
P.
,
Bennis
,
F.
, and
Chablat
,
D.
,
2005
, “
Sensitivity Analysis of the Orthoglide: A Three-DOF Translational Parallel Kinematic Machine
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
392
402
.10.1115/1.2166852
4.
Youn
,
B. D.
, and
Wang
,
P.
,
2008
, “
Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscip. Optim.
,
36
(
2
), pp.
107
123
.10.1007/s00158-007-0202-7
5.
Zou
,
T.
,
Mourelatos
,
Z. P.
,
Mahadevan
,
S.
, and
Tu
,
J.
,
2008
, “
An Indicator Response Surface Method for Simulation-Based Reliability Analysis
,”
ASME J. Mech. Des.
,
130
(
7
), p.
071401
.10.1115/1.2918901
6.
Kleijnen
,
J. P.
,
1998
, “
Experimental Design for Sensitivity Analysis, Optimization, and Validation of Simulation Models
,”
Handbook of Simulation
,
J.
Banks
, ed.,
Wiley
,
New York
, pp.
173
223
.10.1002/9780470172445.ch6
7.
Box
,
G. E.
,
Hunter
,
W. G.
, and
Hunter
,
J. S.
,
1978
,
Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building
,
Wiley
,
New York.
8.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.10.1080/00401706.1991.10484804
9.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2005
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
875
886
.10.1115/1.1904642
10.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
Wiley-Interscience
,
New York
.10.1002/9780470725184
11.
Iman
,
R. L.
, and
Helton
,
J. C.
,
1988
, “
An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models
,”
Risk Anal.
,
8
(
1
), pp.
71
90
.10.1111/j.1539-6924.1988.tb01155.x
12.
Helton
,
J.
,
Garner
,
J.
,
Marietta
,
M.
,
Rechard
,
R.
,
Rudeen
,
D.
, and
Swift
,
P.
,
1993
, “
Uncertainty and Sensitivity Analysis Results Obtained in a Preliminary Performance Assessment for the Waste Isolation Pilot Plant
,”
Nucl. Sci. Eng.
,
114
(
4
), pp.
286
331
.
13.
Drignei
,
D.
, and
Mourelatos
,
Z. P.
,
2012
, “
Parameter Screening in Statistical Dynamic Computer Model Calibration Using Global Sensitivities
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081001
.10.1115/1.4006874
14.
Chatterjee
,
S.
, and
Hadi
,
A. S.
,
2009
,
Sensitivity Analysis in Linear Regression
,
Wiley
,
New York
.10.1002/9780470316764
15.
Liu
,
Y.
,
Yin
,
X.
,
Huang
,
H.-Z.
,
Arendt
,
P.
, and
Chen
,
W.
,
2010
, “
A Hierarchical Statistical Sensitivity Analysis Method for Multilevel Systems With Shared Variables
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031006
.10.1115/1.4001211
16.
Yue
,
J.
,
Camelio
,
J. A.
,
Chin
,
M.
, and
Cai
,
W.
,
2006
, “
Product-Oriented Sensitivity Analysis for Multistation Compliant Assemblies
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
844
851
.10.1115/1.2735341
17.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K.-S.
,
1999
, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
,
41
(
1
), pp.
39
56
.10.1080/00401706.1999.10485594
18.
Chan
,
K.
,
Saltelli
,
A.
, and
Tarantola
,
S.
,
1997
, “
Sensitivity Analysis of Model Output: Variance-Based Methods Make the Difference
,”
29th Conference on Winter Simulation
,
IEEE
Computer Society, pp.
261
268
.10.1145/268437.268489
19.
Liu
,
H.
,
Sudjianto
,
A.
, and
Chen
,
W.
,
2006
, “
Relative Entropy Based Method for Probabilistic Sensitivity Analysis in Engineering Design
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
326
336
.10.1115/1.2159025
20.
Hutcheson
,
R. S.
, and
McAdams
,
D. A.
,
2010
, “
A Hybrid Sensitivity Analysis for Use in Early Design
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111007
.10.1115/1.4001408
21.
Neumaier
,
A.
,
1989
, “
Rigorous Sensitivity Analysis for Parameter-Dependent Systems of Equations
,”
J. Math. Anal. Appl.
,
144
(
1
), pp.
16
25
.10.1016/0022-247X(89)90357-0
22.
Rump
,
S. M.
,
1990
, “
Rigorous Sensitivity Analysis for Systems of Linear and Nonlinear Equations
,”
Math. Comput.
,
54
(
190
), pp.
721
736
.10.1090/S0025-5718-1990-1011445-5
23.
Wallner
,
J.
,
Schröcker
,
H. P.
, and
Hu
,
S. M.
,
2005
, “
Tolerances in Geometric Constraint Problems
,”
Reliab. Comput.
,
11
(
3
), pp.
235
251
.10.1007/s11155-005-3617-0
24.
Goldsztejn
,
A.
,
2008
, “
Sensitivity Analysis Using a Fixed Point Interval Iteration
,” Techncial Report Hal No. 00339377.
25.
Guo
,
J.
, and
Du
,
X.
,
2009
, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Eng.
,
78
(
13
), pp.
1585
1617
.10.1002/nme.2543
26.
Li
,
M.
, and
Williams
,
N.
,
2009
, “
Interval Uncertainty Reduction and Single-Disciplinary Sensitivity Analysis With Multi-Objective Optimization
,”
ASME J. Mech. Des.
,
131
(
3
), pp.
1
11
.10.1115/1.3066736
27.
Li
,
M.
,
Hamel
,
J.
, and
Azarm
,
S.
,
2010
, “
Optimal Uncertainty Reduction for Multi-Disciplinary Multi-Output Systems Using Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
40
(
1
), pp.
77
96
.10.1007/s00158-009-0372-6
28.
Börner
,
F.
,
Bulatov
,
A.
,
Jeavons
,
P.
, and
Krokhin
,
A.
,
2003
, “
Quantified Constraints: Algorithms and Complexity
,” Computer Science Logic, M. Baaz and J. A. Makowsky eds.,
Springer Publishing
,
New York
, pp.
58
70
.
29.
Shary
,
S. P.
,
2002
, “
A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity
,”
Reliab. Comput.
,
8
(
5
), pp.
321
418
.10.1023/A:1020505620702
30.
Hu
,
J.
,
Aminzadeh
,
M.
, and
Wang
,
Y.
,
2014
, “
Searching Feasbile Design Space by Solving Quantified Constraint Satisfaction Problems
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031002
.10.1115/1.4026027
31.
Zeleny
,
M.
,
1973
, “
Compromise Programming
,”
Multiple Criteria Decision Making
,
J. L. C. A. M.
Zeleny
, ed.,
University of South Carolina Press
,
Columbia, SC
, pp.
262
301
.
32.
Sobek
,
D. K.
,
Ward
,
A. C.
, and
Liker
,
J. K.
,
1999
, “
Toyota’s Principles of Set-Based Concurrent Engineering
,”
Sloan Manage. Rev.
,
40
(
2
), pp.
67
84
.
33.
Singer
,
D. J.
,
Doerry
,
N.
, and
Buckley
,
M.
,
2009
, “
What Is Set-Based Design?
,”
Nav. Eng. J.
,
121
(
4
), pp.
31
43
.10.1111/j.1559-3584.2009.00226.x
34.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
,
1999
, “
Quality Utility—A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
179
187
.10.1115/1.2829440
35.
Apt
,
K. R.
,
1999
, “
The Essence of Constraint Propagation
,”
Theor. Comput. Sci.
,
221
(
1–2
), pp.
179
210
.10.1016/S0304-3975(99)00032-8
36.
Klir
,
G. J.
,
2006
,
Uncertainty and Information: Foundations of Generalized Information Theory
,
Wiley-Interscience
,
Hoboken, NJ
.10.1002/0471755575
37.
Eastman
,
C. M.
,
1973
, “
Automated Space Planning
,”
Artif. Intell.
,
4
(
1
), pp.
41
64
.10.1016/0004-3702(73)90008-8
38.
Medjdoub
,
B.
, and
Yannou
,
B.
,
2000
, “
Separating Topology and Geometry in Space Planning
,”
Comput. Aided Des.
,
32
(
1
), pp.
39
61
.10.1016/S0010-4485(99)00084-6
39.
Dohmen
,
M.
,
1995
, “
A Survey of Constraint Satisfaction Techniques for Geometric Modeling
,”
Comput. Graphics
,
19
(
6
), pp.
831
845
.10.1016/0097-8493(95)00055-0
40.
Yannou
,
B.
,
Moreno
,
F.
,
Thevenot
,
H. J.
, and
Simpson
,
T. W.
, “
Faster Generation of Feasible Design Points
,”
ASME
Paper No. DETC2005-85449.10.1115/DETC2005-85449
41.
Titus
,
N.
, and
Ramani
,
K.
,
2005
, “
Design Space Exploration Using Constraint Satisfaction
,”
Configuration Workshop at the 19th International Joint Conference on Artificial Intelligence (IJCAI'05)
, pp.
31
36
.
42.
Sébastian
,
P.
,
Chenouard
,
R.
,
Nadeau
,
J. P.
, and
Fischer
,
X.
,
2007
, “
The Embodiment Design Constraint Satisfaction Problem of the BOOTSTRAP Facing Interval Analysis and Genetic Algorithm Based Decision Support Tools
,”
Int. J. Interact. Des. Manuf.
,
1
(
2
), pp.
99
106
.10.1007/s12008-007-0014-4
43.
Panchal
,
J. H.
,
Gero Fernández
,
M.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2007
, “
An Interval-Based Constraint Satisfaction (IBCS) Method for Decentralized, Collaborative Multifunctional Design
,”
Concurrent Eng.
,
15
(
3
), pp.
309
323
.10.1177/1063293X07083083
44.
Yvars
,
P. A.
,
2009
, “
A CSP Approach for the Network of Product Lifecycle Constraints Consistency in a Collaborative Design Context
,”
Eng. Appl. Artif. Intell.
,
22
(
6
), pp.
961
970
.10.1016/j.engappai.2008.11.006
45.
Lottaz
,
C.
,
Sam-Haroud
,
D.
,
Faltings
,
B.
, and
Smith
,
I.
, “
Constraint Techniques for Collaborative Design
,”
IEEE
International Conference on Tools With Artificial Intelligence
, Taipei, Nov. 10–12, pp.
34
41
.10.1109/TAI.1998.744754
46.
Dantan
,
Y. J.
,
2005
, “
Tolerance Synthesis: Quantifier Notion and Virtual Boundary
,”
Comput.-Aided Des.
,
37
(
2
), pp.
231
240
.10.1016/j.cad.2004.06.008
47.
Qureshi
,
A. J.
,
Dantan
,
J. Y.
,
Bruyere
,
J.
, and
Bigot
,
R.
,
2010
, “
Set Based Robust Design of Mechanical Systems Using the Quantifier Constraint Satisfaction Algorithm
,”
Eng. Appl. Artif. Intell.
,
23
(
7
), pp.
1173
1186
.10.1016/j.engappai.2010.02.003
48.
Wang
,
Y.
,
2008
, “
Interpretable Interval Constraint Solvers in Semantic Tolerance Analysis
,”
Comput. Aided Des. Appl.
,
5
(
5
), pp.
654
666
.10.3722/cadaps.2008.654-666
49.
Wang
,
Y.
,
2008
, “
Closed-Loop Analysis in Semantic Tolerance Modeling
,”
ASME J. Mech. Des.
,
130
(
6
), p.
061701
.10.1115/1.2900715
50.
Dantan
,
J. Y.
, and
Qureshi
,
A. J.
,
2009
, “
Worst-Case and Statistical Tolerance Analysis Based on Quantified Constraint Satisfaction Problems and Monte Carlo Simulation
,”
Comput.-Aided Des.
,
41
(
1
), pp.
1
12
.10.1016/j.cad.2008.11.003
51.
Benhamou
,
F.
,
Goualard
,
F.
,
Languenou
,
E.
, and
Cheristie
,
M.
,
2004
, “
Interval Constraint Solving for Camera Control and Motion Planning
,”
ACM Trans. Comput. Logic
,
5
(
4
), pp.
732
767
.10.1145/1024922.1024927
52.
Jirstrand
,
M.
,
1997
, “
Nonlinear Control System Design by Quantifier Elimination
,”
J. Symbolic Comput.
,
24
(
2
), pp.
137
152
.10.1006/jsco.1997.0119
53.
Herrero
,
P.
,
Sainz
,
M. A.
,
Vehi
,
J.
, and
Jaulin
,
L.
,
2005
, “
Quantified Set Inversion Algorithm With Applications to Control
,”
Reliab. Comput.
,
11
(
5
), pp.
369
382
.10.1007/s11155-005-0044-1
54.
Herrero
,
P.
,
Sainz
,
M. Á.
,
Vehí
,
J.
, and
Jaulin
,
L.
,
2004
, “
Quantified Set Inversion With Applications to Control
,”
IEEE
International Symposium on Computer Aided Control Systems Design
, Taipei, Sept. 4, pp.
179
183
.10.1109/CACSD.2004.1393872
55.
Ratschan
,
S.
, and
Vehı
,
J.
, “
Robust Pole Clustering of Parametric Uncertain Systems Using Interval Methods
,”
4th IFAC Symposium on Robust Control Design
,
S.
Bittanti
, and
P.
Colaneri
, eds., pp.
323
328
.
56.
Benedetti
,
M.
,
Lallouet
,
A.
, and
Vautard
,
J.
,
2007
, “
Modeling Adversary Scheduling With QCSP+
,” Proceedings of the 23rd Annual
ACM
Symposium on Applied Computing, ACM Press, New York, pp.
151
155
.10.1145/1363686.1363727
57.
Benedetti
,
M.
,
Lallouet
,
A.
, and
Vautard
,
J.
, “
QCSP Made Practical by Virtue of Restricted Quantification
,”
20th International Joint Conference on Artificial Intelligence (IJCAI 2007)
, pp.
38
43
.
58.
Sachenbacher
,
M.
, and
Maier
,
P.
,
2008
, “
Test Strategy Generation Using Quantified CSPs
,”
Proceedings of the 14th International Conference on Principles and Practice of Active of Constraint Programming (CP-08)
,
P. J.
Stuckey
, ed.,
Springer
,
New York
, pp.
566
570
.10.1007/978-3-540-85958-1_43
59.
Sachenbacher
,
M.
, and
Schwoon
,
S.
,
2008
, “
Model-Based Testing Using Quantified CSPs: A Map
,” Workshop at the ECAI 2008 on Model-Based Systems, pp.
37
41
.
60.
Gardeñes
,
E.
,
Sainz
,
M. Á.
,
Jorba
,
L.
,
Calm
,
R.
,
Estela
,
R.
,
Mielgo
,
H.
, and
Trepat
,
A.
,
2001
, “
Modal Intervals
,”
Reliab. Comput.
,
7
(
2
), pp.
77
111
.10.1023/A:1011465930178
61.
Dimitrova
,
N.
,
Markov
,
S.
, and
Popova
,
E.
,
1992
, “
Extended Interval Arithmetics: New Results and Applications
,”
Computer Arithmetics Enclosure Methods
,
L.
Atanasova
, and
J.
Herzberger
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
225
232
.
62.
Kaucher
,
E.
,
1980
, “
Interval Analysis in the Extended Interval Space IR
,”
Comput. Suppl.
,
2
, pp.
33
49
.10.1007/978-3-7091-8577-3
63.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
Society for Industrial Mathematics
,
Philadelphia, PA
.
64.
Rényi
,
A.
,
1970
,
Introduction to Information Theory, Probability Theory
,
North-Holland
,
Amsterdam, The Netherlands
, pp.
540
616
.
65.
Hu
,
J.
, and
Wang
,
Y.
,
2014
, “
Sensitivity Analysis for Quantified Interval Constraints
,”
Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures
,
G.
Deodatis
,
B. R.
Ellingwood
, and
D. M.
Frangopol
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
2931
2938
.10.1201/b16387-425
66.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Safety
,
52
(
1
), pp.
1
17
.10.1016/0951-8320(96)00002-6
67.
Chen
,
M.
, and
Guo
,
L.
,
2011
, “
The Parameters Sensitivity Analysis of Battery Electric Vehicle Dynamic
,”
Appl. Mech. Mater.
,
80–81
, pp.
837
840
.10.4028/www.scientific.net/AMM.80-81.837
68.
Chad
,
H.
, and
Rosen
,
D. W.
, “
Identification of Platform Variables in Product Family Design Using Sensitivity Analysis
,”
ASME
Paper No. DETC2012-71198.10.1115/DETC2012-71198
You do not currently have access to this content.