Recently, a cellular structure concept based on fluidic flexible matrix composites (F2MCs) was investigated for its potential of concurrently achieving multiple adaptive functions. Such structure consists of two fluidically connected F2MC cells, and it has been proven capable of dynamic actuation with enhanced authority, variable stiffness, and vibration absorption. The purpose of the research presented in this paper is to develop comprehensive design and synthesis tools to exploit the rich functionality and versatility of this F2MC based system. To achieve this goal, two progressive research topics are addressed: The first is to survey unique architectures based on rigorous mathematical principles. Four generic types of architectures are identified for the dual-cellular structure based on fluidic and mechanical constraints between the two cells. The system governing equations of motion are derived and experimentally tested for these architectures, and it is found that the overall structural dynamics are related to the F2MC cell stiffness, internal pressure difference, and static flow volume between the two cells according to the architectural layout. The second research topic is to derive a comprehensive synthesis procedure to assign the F2MC designs so that the cellular structure can simultaneously reach a set of different performance targets. Synthesis case studies demonstrate the range of performance of the F2MC based cellular structure with respect to different architectures. The outcome of this investigation could provide valuable insights and design methodologies to foster the adoption of F2MC to advance the state of art of a variety of engineering applications. It also lays the foundation for a large-scale “metastructure,” where many pairs of fluidically connected F2MC can be employed as modules to achieve synergetic global performance.

References

References
1.
Pagitz
,
M.
, and
Bold
,
J.
,
2013
, “
Shape-Changing Shell-Like Structures
,”
Bioinspiration Biomimetics
,
8
(
1
), p.
016010
.10.1088/1748-3182/8/1/016010
2.
Pagitz
,
M.
,
Lamacchia
,
E.
, and
Hol
,
J. M. A. M.
,
2012
, “
Pressure-Actuated Cellular Structures
,”
Bioinspiration Biomimetics
,
7
(
1
), p.
016007
.10.1088/1748-3182/7/1/016007
3.
Ramrakhyani
,
D. S.
,
Lesieutre
,
G. A.
,
Frecker
,
M. I.
, and
Bharti
,
S.
,
2005
, “
Aircraft Structural Morphing Using Tendon-Actuated Compliant Cellular Trusses
,”
J. Aircr.
,
42
(
6
), pp.
1614
1620
.10.2514/1.9984
4.
Ueda
,
J.
,
Secord
,
T. W.
, and
Asada
,
H. H.
,
2010
, “
Large Effective-Strain Piezoelectric Actuators Using Nested Cellular Architecture With Exponential Strain Amplification Mechanisms
,”
IEEE/ASME Trans. Mechatron.
,
15
(
5
), pp.
770
782
.10.1109/TMECH.2009.2034973
5.
Vasista
,
S.
, and
Tong
,
L.
,
2012
, “
Design and Testing of Pressurized Cellular Planar Morphing Structures
,”
AIAA J.
,
50
(
6
), pp.
1328
1338
.10.2514/1.J051427
6.
Vos
,
R.
,
Barrett
,
R.
, and
Romkes
,
A.
,
2011
, “
Mechanics of Pressure-Adaptive Honeycomb
,”
J. Intell. Mater. Syst. Struct.
,
22
(
10
), pp.
1041
1055
.10.1177/1045389X11412638
7.
Luo
,
Q.
, and
Tong
,
L.
,
2013
, “
Adaptive Pressure-Controlled Cellular Structures for Shape Morphing I: Design and Analysis
,”
Smart Mater. Struct.
,
22
(
5
), p.
055014
.10.1088/0964-1726/22/5/055014
8.
Luo
,
Q.
, and
Tong
,
L.
,
2013
, “
Adaptive Pressure-Controlled Cellular Structures for Shape Morphing: II. Numerical and Experimental Validation
,”
Smart Mater. Struct.
,
22
(
5
), p.
055015
.10.1088/0964-1726/22/5/055015
9.
Puttmann
,
J.
,
Beblo
,
R.
,
Joo
,
J.
,
Smyers
,
B.
, and
Reich
,
G.
,
2012
, “
Design of a Morphing Skin by Optimizing a Honeycomb Structure With a Two Phase Material Infill
,”
ASME
, Paper No. SMASIS2012-813110.1115/SMASIS2012-8131.
10.
Secord
,
T. W.
, and
Asada
,
H. H.
,
2010
, “
A Variable Stiffness PZT Actuator Having Tunable Resonant Frequencies
,”
IEEE Trans. Rob.
,
26
(
6
), pp.
993
1005
.10.1109/TRO.2010.2076850
11.
Pontecorvo
,
M. E.
,
Barbarino
,
S.
, and
Gandhi
,
F. S.
,
2012
, “
Cellular Honeycomb Like Structures With Internal Inclusions in the Unit Cell
,”
ASME
, Paper No. SMASIS2012-807510.1115/SMASIS2012-8075.
12.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.10.1073/pnas.1217998110
13.
Burgert
,
I.
, and
Fratzl
,
P.
,
2009
, “
Actuation Systems in Plants as Prototypes for Bioinspired Devices
,”
Philos. Trans. R. Soc., A
,
367
(
1893
), pp.
1541
1557
.10.1098/rsta.2009.0003
14.
Martone
,
P. T.
,
Boller
,
M.
,
Burgert
,
I.
,
Dumais
,
J.
,
Edwards
,
J.
,
Mach
,
K.
,
Rowe
,
N.
,
Rueggeberg
,
M.
,
Seidel
,
R.
, and
Speck
,
T.
,
2010
, “
Mechanics Without Muscle: Biomechanical Inspiration From the Plant World
,”
Integr. Comp. Biol.
,
50
(
5
), pp.
888
907
.10.1093/icb/icq122
15.
Philen
,
M. K.
,
Shan
,
Y.
,
Prakash
,
P.
,
Wang
,
K. W.
,
Rahn
,
C. D.
,
Zydney
,
A. L.
, and
Bakis
,
C. E.
,
2007
, “
Fibrillar Network Adaptive Structure With Ion-Transport Actuation
,”
J. Intell. Mater. Syst. Struct.
,
18
(
4
), pp.
323
334
.10.1177/1045389X06066097tions
16.
Shan
,
Y.
,
Philen
,
M. K.
,
Bakis
,
C. E.
,
Wang
,
K. W.
, and
Rahn
,
C. D.
,
2006
, “
Nonlinear-Elastic Finite Axisymmetric Deformation of Flexible Matrix Composite Membranes Under Internal Pressure and Axial Force
,”
Compos. Sci. Technol.
,
66
(
15
), pp.
3053
3063
.10.1016/j.compscitech.2006.01.002
17.
Shan
,
Y.
,
Philen
,
M. K.
,
Lotfi
,
A.
,
Li
,
S.
,
Bakis
,
C. E.
,
Rahn
,
C. D.
, and
Wang
,
K. W.
,
2008
, “
Variable Stiffness Structures Utilizing Fluidic Flexible Matrix Composites
,”
J. Intell. Mater. Syst. Struct.
,
20
(
4
), pp.
443
456
.10.1177/1045389X08095270
18.
Li
,
S.
, and
Wang
,
K. W.
,
2012
, “
Learning From Plants—Recent Advances in Fluidic Flexible Matrix Composite Based Multi-Cellular and Multi-Functional Adaptive Structures
,”
Plants and Mechanical Motion: A Synthetic Approach to Nastic Materials and Structures
,
N. M.
Wereley
, and
J. M.
Stater
, eds.,
DEStech Publications, Inc.
,
Lancaster, PA
, pp.
115
140
.
19.
Li
,
S.
, and
Wang
,
K. W.
,
2012
, “
On the Dynamic Characteristics of Biological Inspired Multicellular Fluidic Flexible Matrix Composite Structures
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
291
300
.10.1177/1045389X11424218
20.
Li
,
S.
, and
Wang
,
K. W.
,
2012
, “
On the Synthesis of a Bio-Inspired Dual-Cellular Fluidic Flexible Matrix Composite Adaptive Structure Based on a Non-Dimensional Dynamics Model
,”
Smart Mater. Struct.
,
22
(
1
), p.
014001
.10.1088/0964-1726/22/1/014001
21.
Li
,
S.
, and
Wang
,
K. W.
,
2013
, “
Synthesizing Fluidic Flexible Matrix Composite-Based Multicellular Adaptive Structure for Prescribed Spectral Data
,”
J. Intell. Mater. Syst. Struct.
,
25
(
11
), pp.
1340
1351
.10.1177/1045389X13505254
22.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
Muscle-Like Characteristics With an Engineered Metastructure
,”
ASME
, Newport, RI, Paper No. SMASIS-2014-7746.10.1115/SMASIS2014-7746
You do not currently have access to this content.