This paper presents for the first time a literature survey toward the design of compliant homokinetic couplings. The rigid-linkage-based constant velocity universal joints (CV joints) available from literature were studied, classified, their graph representations were presented, and their mechanical efficiencies compared. Similarly, literature is reviewed for different kinds of compliant joints suitable to replace instead of rigid-body joints in rigid-body CV joints. The compliant joints are compared based on analytical data. To provide a common basis for comparison, consistent flexure scales and material selection are used. It was found that existing compliant universal joints are nonconstant in velocity and designed based on rigid-body Hooke's universal joint. It was also discovered that no compliant equivalent exists for cylindrical, planar, spherical fork, and spherical parallelogram quadrilateral joints. We have demonstrated these compliant joints can be designed by combining existing compliant joints. The universal joints found in this survey are rigid-body non-CV joints, rigid-body CV joints, or compliant non-CV joints. A compliant homokinetic coupling is expected to combine the advantages of compliant mechanisms and constant velocity couplings for many applications where maintenance or cleanliness is important, for instance in medical devices and precision instruments.

References

References
1.
Moon
,
Y. M.
, and
Kota
,
S.
,
2002
, “
Design of Compliant Parallel Kinematic Machines
,”
ASME
Paper No. DETC2002/MECH-34204.10.1115/DETC2002/MECH-34204
2.
Perry
,
J. C.
,
Oblak
,
J.
,
Jung
,
J. H.
,
Cikajlo
,
I.
,
Veneman
,
J. F.
,
Goljar
,
N.
,
Bizovicar
,
N.
,
Matjacic
,
Z.
, and
Keller
,
T.
,
2011
, “
Variable Structure Pantograph Mechanism With Spring Suspension System for Comprehensive Upper-Limb Haptic Movement Training
,”
J. Rehab. Res. Dev.
,
48
(
4
), pp.
317
334
.10.1682/JRRD.2010.03.0043
3.
Ishii
,
C.
, and
Kamei
,
Y.
,
2008
, “
On Servo Experiment of a New Multi-DOF Robotic Forceps Manipulator for Minimally Invasive Surgery
,”
Proceeding of the 5th International Symposium on Mechanics and Its Applications
, Amman, Jordan, May 27–29, pp.
1
6
.
4.
Chiang
,
C. H.
,
1988
, Kinematics of Spherical Mechanisms, Cambridge University Press, Cambridge, UK.
5.
Hunt
,
K. H.
,
1973
, “
Constant-Velocity Shaft Couplings: A General Theory
,”
J. Eng. Ind.
,
95
(B), pp.
455
464
.10.1115/1.3438177
6.
Rzeppa
,
A. H.
,
1928
, “
Constant Velocity Universal Joint
,” U.S. Patent No. 1,665,280.
7.
Culver
,
I. H.
,
1969
, “
Constant Velocity Universal Joint
,” U.S. Patent No. 3,477,249.
8.
Thompson
,
G. A.
,
2006
, “
Constant Velocity Coupling and Control System Therefore
,” U.S. Patent No. 7,144,326.
9.
Kocabas
,
H.
,
2007
, “
Design and Analysis of a Spherical Constant Velocity Coupling Mechanism
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
991
998
.10.1115/1.2748455
10.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
, p.
459
.
11.
Herder
,
J. L.
, and
Van Den Berg
,
F. P. A.
,
2000
, “
Statically Balanced Compliant Mechanisms (SBCM's), and Example and Prospects
,”
Proceedings ASME DETC 26th Biennial, Mechanisms and Robotics Conference
, Baltimore, MD, ASME Paper No. DETC2000/MECH-14144, pp.
553
560
.
12.
Berglund
,
M. D.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2000
, “
Design Rules for Selecting and Designing Compliant Mechanisms for Rigid-Body Replacement Synthesis
,”
Proceedings of the 26th Design Automation Conference
, ASME DETC, Baltimore, MD, 14225.
13.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.10.1115/1.2919359
14.
Hopkins
,
J. B.
,
2007
, “
Design of Parallel Flexure Systems via Freedom and Constraint Topologies (FACT)
,” Master thesis, Massachusetts Institute of Technology, Cambridge, MA.
15.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom Flexure System Concepts via Freedom and Constraint Topologies (FACT)—Part I: Principles
,”
J. Precis. Eng.
,
34
(
2
), pp.
259
270
.10.1016/j.precisioneng.2009.06.008
16.
Martin
,
G. H.
,
1982
,
Kinematics and Dynamics of Machines
,
McGraw-Hill Book Company
,
New York
.
17.
Molly
,
H.
, and
Bengisu
,
O.
,
1969
, “
Das Gleichgang–Gelenk im Symmetriespiegel (The Constant Velocity Joint in the Mirror of Symmetry)
,”
Automob. Ind.
,
14
(
2
), pp.
45
54
.
18.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
2nd ed.
,
Springer
, New York.10.1007/978-1-4419-7892-9
19.
Xu
,
P.
,
Jingjun
,
Y.
,
Guanghua
,
Z.
, and
Shusheng
,
B.
,
2007
, “
The Modeling of Leaf-Type Isosceles-Trapezoidal Flexural Pivots
,”
ASME
Paper No. DETC2007-34981.10.1115/DETC2007-34981
20.
Jingjun
,
Y.
,
Xu
,
P.
,
Minglei
,
S.
,
Shanshan
,
Z.
,
Shushing
,
B.
, and
Guanghua
,
Z.
,
2009
, “
A New Large–Stroke Compliant Joint & Micro/Nano Positioner Design Based on Compliant Building Blocks
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
, London, UK, June 22–24, pp.
409
416
.
21.
Trease
,
B. P.
,
Moon
,
Y. M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.10.1115/1.1900149
22.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech. Des.
,
105
(
4
), pp.
705
712
.10.1115/1.3258540
23.
Rineer
,
A. E.
,
1979
, “
Constant Velocity Universal Joint
,” U.S. Patent No. 4,133,189.
24.
Sclater
,
N.
, and
Chironis
,
N. P.
,
2001
,
Mechanisms and Mechanical Devices Sourcebook
,
3rd ed.
,
McGraw-Hill Book Company
,
New York
.
25.
Geisthoff
,
H.
,
Welschof
,
H.
, and
Herchenbach
,
P.
,
1966
, “
Quasi Homokinetic Double Hooke
,” German Patent No. 1,302,735.
26.
Geisthoff
,
H.
,
Welschof
,
H.
, and
Herchenbach
,
P.
,
1978
, “
Strictly Homokinetic Double Hooke
,” German Patent No. 2,802,572.
27.
Wier
,
F. L.
,
1968
, “
Constant Velocity Universal Joint
,” U.S. Patent No. 3,385,081.
28.
Fenaille
,
P.
,
1927
, “
Tracta Joint
,” German Patent No. 617,356.
29.
Fischer
,
I. S.
,
1999
, “
Numerical Analysis of Displacements in a Tracta Coupling
,”
J. Eng. Comput.
,
15
(
4
), pp.
334
344
.10.1007/s003660050028
30.
Freudenstein
,
F.
, and
Maki
,
E. R.
,
1979
, “
Creation of Mechanisms According to Kinematic Structure and Function
,”
Environ. Plann. B
,
6
(
4
), pp.
375
391
.10.1068/b060375
31.
Dodge
,
A. Y.
,
1941
, “
Constant Velocity Universal Joint
,” U.S. Patent No. 2,255,762.
32.
Baker
,
M. P.
,
1966
, “
Constant Velocity Universal Joint
,” U.S. Patent No. 3,263,447.
33.
Eccher
,
O. B.
,
1970
, “
Constant Velocity Universal Joint
,” U.S. Patent No. 3,517,528.
34.
Falk
,
J. B.
,
1975
, “
High Deflection Constant Speed Universal Joint
,” U.S. Patent No. 3,924,420.
35.
Yaghoubi
,
M.
,
Mohtasebi
,
S. S.
,
Jafary
,
A.
, and
Khaleghi
,
H.
,
2011
, “
Design, Manufacture and Evaluation of a New and Simple Mechanism for Transmission of Power Between Intersecting Shafts up to 135 Degrees (Persian Joint)
,”
J. Mech. Mach. Theory
,
46
(
7
), pp.
861
868
.10.1016/j.mechmachtheory.2011.02.011
36.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms Design of Flexure Hinges
,
CRC Press
,
New York
, pp.
72
82
.10.1201/9781420040272
37.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
38.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science
,
New York
.
39.
Dirksen
,
F.
, and
Lammering
,
R.
,
2011
, “
On Mechanical Properties of Planar Flexure Hinges of Compliant Mechanisms
,”
J. Mech. Sci.
,
2
, pp.
109
117
.10.5194/ms-2-109-2011
40.
Chen
,
G. M.
,
Jia
,
J. Y.
, and
Li
,
Z. W.
,
2005
, “
Right-Circular Corner-Filleted Flexure Hinges
,”
IEEE
International Conference on Automation Science and Engineering, Edmonton, Canada, Aug. 1–2, pp.
249
253
.10.1109/COASE.2005.1506777
41.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Malley
,
E. O.
, and
Samuelson
,
M.
,
2002
, “
Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-Form Equations
,”
J. Precis. Eng.
,
26
(
2
), pp.
183
192
.10.1016/S0141-6359(01)00108-8
42.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2002
, “
Design of Symmetric Conic-Section Flexure Hinges Based on Closed-Form Compliance Equations
,”
J. Mech. Mach. Theory
,
37
(
5
), pp.
477
498
.10.1016/S0094-114X(02)00002-2
43.
Smith
,
S. T.
,
Badami
,
V. G.
,
Dale
,
J. S.
, and
Xu
,
Y.
,
1997
, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1474
1483
.10.1063/1.1147635
44.
Tian
,
Y.
,
Shirinzadeh
,
B.
,
Zhang
,
D.
, and
Zhong
,
Y.
,
2010
, “
Three Flexure Hinges for Compliant Mechanism Designs Based on Dimensionless Graph Analysis
,”
J. Precis. Eng.
,
34
(
1
), pp.
92
100
.10.1016/j.precisioneng.2009.03.004
45.
Haringx
,
J. A.
,
1949
, “
The Cross Spring Pivot as a Constructional Element
,”
Appl. Sci. Res.
,
1
(
1
), pp.
313
332
.10.1007/BF02120338
46.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-Axis Flexural Pivots
,”
J. Mech. Mach. Theory
,
37
(
5
), pp.
461
476
.10.1016/S0094-114X(02)00007-1
47.
Martin
,
J.
, and
Robert
,
M.
,
2011
, “
Novel Flexible Pivot With Large Angular Range and Small Center Shift to be Integrated Into a Bio-Inspired Robotic Hand
,”
J. Intell. Mater. Syst. Struct.
,
22
(
13
), pp.
1431
1437
.10.1177/1045389X11412639
48.
Xu
,
P.
,
Jingjun
,
Y.
,
Guanghua
,
Z.
,
Shusheng
,
B.
, and
Zhiwei
,
Y.
,
2008
, “
Analysis of Rotational Precision for an Isosceles-Trapezoidal Flexural Pivot
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052302
.10.1115/1.2885507
49.
Xu
,
P.
,
Jingjun
,
Y.
,
Guanghua
,
Z.
, and
Shusheng
,
B.
,
2008
, “
The Stiffness Model of Leaf-Type Isosceles Trapezoidal Flexural Pivots
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082303
.10.1115/1.2936902
50.
Xu
,
P.
,
Jingjun
,
Y.
,
Guanghua
,
Z.
, and
Shusheng
,
B.
,
2009
, “
A Novel Family of Leaf-Type Compliant Joints: Combination of Two Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021005
.10.1115/1.3046140
51.
Xu
,
P.
, and
Jingjun
,
Y.
,
2011
, “
ADLIF: A New Large-Displacement Beam-Based Flexure Joint
,”
J. Mech. Sci.
,
2
, pp.
183
188
.10.5194/ms-2-183-2011
52.
Henein
,
S.
,
Droz
,
S.
,
Myklebust
,
L.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
Proceedings of the 10th European Space Mechanisms and Tribology Symposium
, Sept. 24–26, San Sebastian, Spain, pp.
1
4
.
53.
Wiersma
,
D. H.
,
Boer
,
S. E.
,
Aarts
,
R. G. K. M.
, and
Brouwer
,
D. M.
,
2012
, “
Large Stroke Performance Optimization of Spatial Flexure Hinges
,”
ASME
Paper No. DETC2012-70502.10.1115/DETC2012-70502
54.
Fowler
,
R. M.
,
2012
, “
Investigation of Compliant Space Mechanisms With Application to the Design of a Large-Displacement Monolithic Compliant Rotational Hinge
,” Master thesis, Brigham Young University, Provo, UT.
55.
Goldfarb
,
M.
, and
Speich
,
J. E.
,
1999
, “
A Well-Behaved Revolute Flexure Joint for Compliant Mechanism Design
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
424
429
.10.1115/1.2829478
56.
Goldfarb
,
M.
, and
Speich
,
J. E.
,
2003
, “
Split Tube Flexure
,” U.S. Patent No. 6,585,445.
57.
Qizhi
,
Y.
,
Xiaobing
,
Z.
,
Long
,
C.
, and
Pengfei
,
Z.
,
2011
, “
Analysis of Traditional Revolute Pair and the Design of a New Compliant Joint
,”
International Conference on Electric Information and Control Engineering (ICEICE)
, Wuhan, China, Apr. 15–17, pp.
2007
2009
.
58.
Berselli
,
G.
,
Piccinini
,
M.
, and
Vassura
,
G.
,
2011
, “
Comparative Evaluation of the Selective Compliance in Elastic Joints for Robotic Structures
,”
IEEE
International Conference on Robotics and Automation, Shanghai, China, May 9–13, pp.
4626
4631
.10.1109/ICRA.2011.5980201
59.
Balucani
,
M.
,
Belfiore
,
N. P.
,
Crescenzi
,
R.
, and
Verotti
,
M.
,
2010
, “
The Development of a MEMS/NEMS-based 3 D.O.F. Compliant Micro Robot
,”
Proceedings of the 19th International Workshop on Robotics in Alpe-Adria-Danube Region
, Budapest, Hungary, June 24–26 pp.
173
179
.10.1109/RAAD.2010.5524590
60.
Hillberry
,
B. M.
, and
Hall
,
A. S.
,
1976
, “
Rolling Contact Prosthetic Knee Joint
,” U.S. Patent No. 3,945,053.
61.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2002
, “
Contact Aided Compliant Mechanisms: Concept and Preliminaries
,”
ASME
Paper No. DETC2002/MECH-34211.10.1115/DETC2002/MECH-34211
62.
Jeanneau
,
A.
,
Herder
,
J. L.
,
Laliberte
,
T.
, and
Gosselin
,
C.
,
2004
, “
A Compliant Rolling Contact Joint and Its Application in a 3-DOF Planar Parallel Mechanism With Kinematic Analysis
,”
ASME
Paper No. DETC2004-57264.10.1115/DETC2004-57264
63.
Cannon
,
J. R.
, and
Howell
,
L. L.
,
2005
, “
A Compliant Contact-Aided Revolute Joint
,”
J. Mech. Mach. Theory
,
40
(
11
), pp.
1273
1293
.10.1016/j.mechmachtheory.2005.01.011
64.
Cannon
,
J. R.
,
Lusk
,
C. P.
, and
Howell
,
L. L.
,
2005
, “
Compliant Rolling-Contact Element Mechanisms
,”
ASME
Paper No. DETC2005-84073.10.1115/DETC2005-84073
65.
See supplementary material Appendices A, B, C, and D for the related formulas for the given results in Table 2, Table 4, Table 5, and Table 6, respectively.
66.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2003
, “
Two-Axis Flexure Hinges With Axially-Collocated and Symmetric Notches
,”
Comput. Struct.
,
81
(
13
), pp.
1329
1341
.10.1016/S0045-7949(03)00056-7
67.
Stark
,
J. A.
,
1958
, “
Flexible Couplings
,” U.S. Patent No. 2,860,495.
68.
Tanik
,
E.
, and
Parlaktas
,
V.
,
2012
, “
Compliant Cardan Universal Joint
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021011
.10.1115/1.4005657
69.
Lobontiu
,
N.
, and
Paine
,
J. S. N.
,
2002
, “
Design of Circular Cross-Section Corner-Filleted Flexure Hinges for Three-Dimensional Compliant Mechanisms
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
479
484
.10.1115/1.1480022
70.
Cannon
,
B. R.
,
Lillian
,
T. D.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Linford
,
M. R.
,
2005
, “
A Compliant End-Effector for Microscribing
,”
Precis. Eng.
,
29
(
1
), pp.
86
94
.10.1016/j.precisioneng.2004.05.006
71.
Lin
,
Y. T.
, and
Lee
,
J. J.
,
2007
, “
Structural Synthesis of Compliant Translational Mechanisms
,” 12th IFToMM World Congress, Besancon, France, June 18–21, pp. 1–5.
72.
Mackay
,
A.
,
2007
, “
Large Displacement Linear Motion Compliant Mechanisms
,” Master's thesis, Brigham Young University, Provo, UT.
73.
Jones
,
R. V.
,
1951
, “
Parallel and Rectilinear Spring Movements
,”
J. Sci. Instrum.
,
28
(
2
), pp.
38
41
.10.1088/0950-7671/28/2/303
74.
Kyusojin
,
A.
, and
Sagawa
,
D.
,
1988
, “
Development of Linear and Rotary Movement Mechanism by Using Flexible Strips
,”
Bull. Jpn. Soc. Precis. Eng.
,
22
(
4
), pp.
309
314
.
75.
Hubbard
,
N. B.
,
Wittwer
,
J. W.
,
Kennedy
,
J. A.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2004
, “
A Novel Fully Compliant Planar Linear-Motion Mechanism
,”
ASME
Paper No. DETC2004-57008.10.1115/DETC2004-57008
You do not currently have access to this content.