Statistical tolerance analysis and synthesis in assemblies subject to loading are of significant importance to optimized manufacturing. Modeling the effects of loads on mechanical assemblies in tolerance analysis typically requires the use of numerical CAE simulations. The associated uncertainty quantification (UQ) methods used for estimating yield in tolerance analysis must subsequently accommodate implicit response functions, and techniques such as Monte Carlo (MC) sampling are typically applied due to their robustness; however, these methods are computationally expensive. A variety of UQ methods have been proposed with potentially higher efficiency than MC methods. These offer the potential to make tolerance analysis and synthesis of assemblies under loading practically feasible. This work reports on the practical application of polynomial chaos expansion (PCE) for UQ in tolerance analysis. A process integration and design optimization (PIDO) tool based, computer aided tolerancing (CAT) platform is developed for multi-objective, tolerance synthesis in assemblies subject to loading. The process integration, design of experiments (DOE), and statistical data analysis capabilities of PIDO tools are combined with highly efficient UQ methods for optimization of tolerances to maximize assembly yield while minimizing cost. A practical case study is presented which demonstrates that the application of PCE based UQ to tolerance analysis can significantly reduce computation time while accurately estimating yield of compliant assemblies subject to loading.

References

1.
Hong
,
Y. S.
, and
Chang
,
T. C.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
.10.1080/00207540210128242
2.
Chase
,
K. W.
, and
Greenwood
,
W. H.
,
1988
, “
Design Issues in Mechanical Tolerance Analysis
,”
ASME Manuf. Rev.
,
1
(
1
), pp.
50
59
.
3.
Michael
,
W.
, and
Siddall
,
J. N.
,
1981
, “
The Optimization Problem With Optimal Tolerance Assignment
,”
ASME J. Mech. Des.
,
103
(
4
), pp.
842
848
.10.1115/1.3254996
4.
Shah
,
J. J.
,
Ameta
,
G.
,
Shen
,
Z.
, and
Davidson
,
J.
,
2007
, “
Navigating the Tolerance Analysis Maze
,”
Comput.- Aided Des. Appl.
,
4
(
5
), pp.
705
718
.10.1080/16864360.2007.107385
5.
Skowronski
,
V. J.
, and
Turner
,
J. U.
,
1997
, “
Using Monte-Carlo Variance Reduction in Statistical Tolerance Synthesis
,”
CAD Comput. Aided Des.
,
29
(
1
), pp.
63
69
.10.1016/S0010-4485(96)00050-4
6.
Spotts
,
M. F.
,
1973
, “
Allocation of Tolerances to Minimize Cost of Assembly
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
762
764
.10.1115/1.3438222
7.
Ye
,
B.
, and
Salustri
,
F. A.
,
2003
, “
Simultaneous Tolerance Synthesis for Manufacturing and Quality
,”
Res. Eng. Des.
,
14
(
2
), pp.
98
106
.
8.
Edel
,
D. H.
, and
Auer
,
T. B.
,
1964
, “
Determine the Least Cost Combination for Tolerance Accumulations in a Drive Shaft Seal Assembly
,”
Gen. Mot. Eng. J.
,
4
, pp.
37
38
.
9.
Wu
,
Z.
,
El Maraghy
,
W. H.
, and
El Maraghy
,
H. A.
,
1988
, “
Evaluation of Cost-Tolerance Algorithms for Design Tolerance Analysis and Synthesis
,”
ASME Manuf. Rev.
,
1
(
3
), pp.
168
179
.
10.
Cho
,
B. R.
,
Kim
,
Y. J.
,
Kimbler
,
D. L.
, and
Phillips
,
M. D.
,
2000
, “
An Integrated Joint Optimization Procedure for Robust and Tolerance Design
,”
Int. J. Prod. Res.
,
38
(
10
), pp.
2309
2325
.10.1080/00207540050028115
11.
Zhang
,
C.
, and
Wang
,
H. P.
,
1993
, “
Integrated Tolerance Optimisation With Simulated Annealing
,”
Int. J. Adv. Manuf. Technol.
,
8
(
3
), pp.
167
174
.10.1007/BF01749907
12.
Chase
,
K. W.
,
Greenwood
,
W. H.
,
Loosli
,
B. G.
, and
Hauglund
,
L. F.
,
1990
, “
Least Cost Tolerance Allocation for Mechanical Assemblies With Automated Process Selection
,”
Manuf. Rev.
,
3
(
1
), pp.
49
59
.
13.
Choi
,
H.-G. R.
,
Park
,
M.-H.
, and
Salisbury
,
E.
,
2000
, “
Optimal Tolerance Allocation With Loss Functions
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
529
535
.10.1115/1.1285918
14.
Jeang
,
A.
,
1999
, “
Optimal Tolerance Design by Response Surface Methodology
,”
Int. J. Prod. Res.
,
37
(
14
), pp.
3275
3288
.10.1080/002075499190284
15.
Wenzhen
,
H.
,
Phoomboplab
,
T.
, and
Ceglarek
,
D.
,
2009
, “
Process Capability Surrogate Model-Based Tolerance Synthesis for Multi-Station Manufacturing Systems
,”
IIE Trans.
,
41
(
4
), pp.
309
322
.10.1080/07408170802510408
16.
Rao
,
Y.
,
Rao
,
C. S. P.
,
Ranga Janardhana
,
G.
, and
Vundavilli
,
P. R.
,
2011
, “
Simultaneous Tolerance Synthesis for Manufacturing and Quality Using Evolutionary Algorithms
,”
Int. J. Appl. Evol. Comput. (IJAEC)
,
2
(
2
), pp.
1
20
.10.4018/jaec.2011040101
17.
Wu
,
F.
,
Dantan
,
J.-Y.
,
Etienne
,
A.
,
Siadat
,
A.
, and
Martin
,
P.
,
2009
, “
Improved Algorithm for Tolerance Allocation Based on Monte Carlo Simulation and Discrete Optimization
,”
Comput. Ind. Eng.
,
56
(
4
), pp.
1402
1413
.10.1016/j.cie.2008.09.005
18.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2011
, “
Simulation of Variational Compliant Assemblies With Shape Errors Based on Morphing Mesh Approach
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1
), pp.
47
61
.10.1007/s00170-010-2839-4
19.
Yu
,
K.
,
Jin
,
S.
,
Lai
,
X.
, and
Xing
,
Y.
,
2008
, “
Modeling and Analysis of Compliant Sheet Metal Assembly Variation
,”
Assem. Autom.
,
28
(
3
), pp.
225
234
.10.1108/01445150810889484
20.
Nigam
,
S. D.
, and
Turner
,
J. U.
,
1995
, “
Review of Statistical Approaches to Tolerance Analysis
,”
CAD Comput. Aided Des.
,
27
(
1
), pp.
6
15
.10.1016/0010-4485(95)90748-5
21.
Frances
,
Y. K.
, and
Ian
,
H. S.
,
2005
,
Lifting the Curse of Dimensionality
.
22.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Marin
,
S. P.
,
2004
, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), p.
355
.10.1115/1.1644553
23.
Merkley
,
K. G.
,
1998
,
Tolerance Analysis of Compliant Assemblies
,
Brigham Young University
,
Provo, UT
.
24.
Xie
,
K.
,
Wells
,
L.
,
Camelio
,
J. A.
, and
Youn
,
B. D.
,
2007
, “
Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), p.
934
.10.1115/1.2752829
25.
Singh
,
P. K.
,
Jain
,
P. K.
, and
Jain
,
S. C.
,
2009
, “
Important Issues in Tolerance Design of Mechanical Assemblies. Part 2: Tolerance Synthesis
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
10
), pp.
1249
1287
.10.1243/09544054JEM1304B
26.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
27.
Eldred
,
M. S.
,
Webster
,
C. G.
, and
Constantine
,
P. G.
,
2008
, “
Evaluation of Non-Intrusive Approaches for Wiener–Askey Generalized Polynomial Chaos
,”
AIAA
Paper No. 2008-1892.10.2514/6.2008-1892
28.
Lee
,
S. H.
, and
Chen
,
W.
,
2009
, “
A Comparative Study of Uncertainty Propagation Methods
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
239
253
.10.1007/s00158-008-0234-7
29.
Nigam
,
S. D.
, and
Turner
,
J. U.
,
1995
, “
Review of Statistical Approaches to Tolerance Analysis
,”
Comput.-Aided Des.
,
27
(
1
), pp.
6
15
.10.1016/0010-4485(95)90748-5
30.
Hammersley
,
J.
,
1975
,
Monte Carlo Methods
,
Fletcher
,
Norwich, UK
.10.1007/978-94-009-5819-7
31.
Keramat
,
M.
, and
Kielbasa
,
R.
,
1997
, “
Latin Hypercube Sampling Monte Carlo Estimation of Average Quality Index for Integrated Circuits
,”
Analog Integr. Circuits Signal Process.
,
14
(
1–2
), pp.
131
142
.10.1023/A:1008207113480
32.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.10.1080/00401706.2000.10485979
33.
Taguchi
,
G.
,
1978
, “
Performance Analysis Design
,”
Int. J. Prod. Res.
,
16
(
6
), pp.
512
530
.10.1080/00207547808930043
34.
Fiessler
,
B.
,
Neumann
,
H.-J.
, and
Rackwitz
,
R.
,
1979
, “
Quadratic Limit States in Structural Reliability
,”
J. Eng. Mech. Div.
,
105
(
4
), pp.
661
676
.
35.
Hohenbichler
,
M.
,
Gollwitzer
,
S.
,
Kruse
,
W.
, and
Rackwitz
,
R.
,
1987
, “
New Light on First- and Second-Order Reliability Methods
,”
Struct. Saf.
,
4
(
4
), pp.
267
284
.10.1016/0167-4730(87)90002-6
36.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
Dover Publications
10.1007/978-1-4612-3094-6.
37.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.10.1016/j.probengmech.2004.04.003
38.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), p.
368
.10.1115/1.2831115
39.
Xiu
,
D.
, and
Karniadakis
,
G.
,
2003
, “
Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), pp.
137
167
.10.1016/S0021-9991(03)00092-5
40.
Schoutens
,
W.
,
2000
,
Stochastic Processes and Orthogonal Polynomials
,
Springer
,
New York
.10.1007/978-1-4612-1170-9
41.
Mazur
,
M.
,
2013
,
Tolerance Analysis and Synthesis of Assemblies Subject to Loading With Process Integration and Design Optimization Tools, in School of Aerospace, Mechanical, and Manufacturing Engineering
,
RMIT University
,
Melbourne, Australia
.
42.
Gerstner
,
T.
, and
Griebel
,
M.
,
1998
, “
Numerical Integration Using Sparse Grids
,”
Numer. Algorithms
,
18
(
3
), pp.
209
232
.10.1023/A:1019129717644
43.
Kuo
,
F. Y.
, and
Sloan
,
I. H.
,
2005
,
Lifting the Curse of Dimensionality
, Vol.
52
,
AMS
, pp.
1320
1328
.
44.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics (Am. Stat. Assoc.)
,
2
(
21
), pp.
239
245
.10.2307/1268522
45.
Huntington
,
D. E.
, and
Lyrintzis
,
C. S.
,
1998
, “
Improvements to and Limitations of Latin Hypercube Sampling
,”
Probab. Eng. Mech.
,
13
(
4
), pp.
245
253
.10.1016/S0266-8920(97)00013-1
46.
Lee
,
S.
, and
Chen
,
W.
,
2009
, “
A Comparative Study of Uncertainty Propagation Methods for Black-Box-Type Problems
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
239
253
.10.1007/s00158-008-0234-7
47.
Eldred
,
M.
, and
Burkardt
,
J.
,
2009
,
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
48.
Wojtkiewicz
,
S.
,
Eldred
,
M. S.
, and
Urbina
,
A.
,
2001
,
Uncertainty Quantification in Large Computational Engineering Models
, Vol.
14
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
49.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
, New York.
50.
Weiner
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.10.2307/2371268
51.
Berveiller
,
M.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2006
, “
Stochastic Finite Element: A Non Intrusive Approach by Regression
,”
Rev. Eur. de Mécanique Numér.
,
15
(
1–3
), pp.
81
92
.
52.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2007
, “
Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures
,”
SIAM J. Sci. Comput.
,
28
(
3
), pp.
901
928
.10.1137/050627630
53.
McRae
,
G. J.
, and
Tatang
,
M. A.
,
1995
,
Direct Incorporation of Uncertainty in Chemical and Environmental Engineering Systems
,
Massachusetts Institute of Technology
.
54.
Armen Der Kiureghian
,
M.
, and
Liu
,
P. L.
,
1986
, “
Structural Reliability Under Incomplete Probability Information
,”
J. Eng. Mech.
,
112
(
1
), p.
85
.10.1061/(ASCE)0733-9399(1986)112:1(85)
55.
Box
,
G. E. P.
, and
Cox
,
D. R.
, “
An Analysis of Transformations
,”
J. R. Stat. Soc. Ser B (Methodological)
, pp.
211
252
.
56.
Choi
,
S. K.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2004
, “
Structural Reliability Under Non-Gaussian Stochastic Behavior
,”
Comput. Struct.
,
82
(
13–14
), pp.
1113
1121
.10.1016/j.compstruc.2004.03.015
57.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
AIAA
Paper No. 2007-1939.10.2514/6.2007-1939
58.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
, Princeton, NJ.
59.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
AIAA
Paper No. 2007-1939.10.2514/6.2007-1939
60.
Xiu
,
D.
,
2007
, “
Efficient Collocational Approach for Parametric Uncertainty Analysis
,”
Commun. Comput. Phys.
,
2
(
2
), pp.
293
309
.
61.
Kalos
,
M. H.
, and
Whitlock
,
P. A.
,
2009
,
Monte Carlo Methods
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.10.1002/9783527626212
62.
Atkinson
,
K. E.
,
2009
,
An Introduction to Numerical Analysis
, 2nd ed.,
Wiley India Pvt. Ltd.
63.
Delves
,
L. M.
, and
Mohamed
,
J. L.
,
1988
,
Computational Methods for Integral Equations
,
Cambridge University Press
.10.1017/CBO9780511569609
64.
Kovvali
,
N.
,
2011
,
Theory and Applications of Gaussian Quadrature Methods
,
Morgan and Claypool
.
65.
Epperson
,
J. F.
,
2007
,
An Introduction to Numerical Methods and Analysis
,
Wiley-Interscience
, Blacksburg, VA.
66.
Bungartz
,
H. J.
, and
Griebel
,
M.
,
2004
, “
Sparse Grids
,”
Acta Numer.
,
13
(
1
), pp.
147
269
.10.1017/S0962492904000182
67.
Smolyak
,
S. A.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions
,”
Dokl. Akad. Nauk SSSR
,
4
, pp.
240
243
.
68.
Gerstner
,
T.
, and
Griebel
,
M.
,
2003
, “
Dimension–Adaptive Tensor–Product Quadrature
,”
Computing
,
71
(
1
), pp.
65
87
.10.1007/s00607-003-0015-5
69.
Burkardt
,
J.
,
2010
, “
1D Quadrature Rules for Sparse Grids
,” Interdisciplinary Center for Applied Mathematics and Information Technology Department, Virginia Tech.
70.
Crestaux
,
T.
,
2009
, “
Polynomial Chaos Expansion for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1161
1172
.10.1016/j.ress.2008.10.008
71.
Burkardt
,
J.
,
2010
, “
The Combining Coefficient for Anisotropic Sparse Grids
,” Interdisciplinary Center for Applied Mathematics & Information Technology Department, Virginia Tech.
72.
Jakeman
,
J. D.
,
Archibald
,
R.
, and
Xiu
,
D.
,
2011
, “
Characterization of Discontinuities in High-Dimensional Stochastic Problems on Adaptive Sparse Grids
,”
J. Comput. Phys.
,
230
(
10
), pp.
3977
3997
.10.1016/j.jcp.2011.02.022
73.
Congedo
,
P. M.
,
Abgrall
,
R.
, and
Geraci
,
G.
,
2011
, “
On the Use of the Sparse Grid Techniques Coupled With Polynomial Chaos.
74.
Debusschere
,
B. J.
,
Najm
,
H. N.
,
Pébay
,
P. P.
,
Knio
,
O. M.
,
Ghanem
,
R. G.
, and
Le Maître
,
O. P.
,
2005
, “
Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
698
719
.10.1137/S1064827503427741
75.
Archibald
,
R. K.
,
Deiterding
,
R.
, and
Xiu
,
D.
,
2012
, “
Approximation and Error Estimation in High Dimen-Sional Space for Stochastic Collocation Methods on Ar-Bitrary Sparse Samples
,” Oak Ridge National Laboratory (ORNL); Center for Computational Sciences.
76.
Mazur
,
M.
,
Leary
,
M.
, and
Subic
,
A.
,
2011
, “
Computer Aided Tolerancing (CAT) Platform for the Design of Assemblies Under External and Internal Forces
,”
Comput.-Aided Des.
,
43
(
6
), pp.
707
719
.10.1016/j.cad.2011.02.004
77.
Deb
,
K.
,
2004
,
Optimization for Engineering Design: Algorithms and Examples
,
Prentice-Hall of India
.
78.
Flager
,
F.
,
Soremekun
,
G.
,
Welle
,
B.
,
Haymaker
,
J.
, and
Bansal
,
P.
,
2009
, “
Multidisciplinary Process Integration and Design Optimization of a Classroom Building
,”
Electron. J. Inf. Technol. Constr.
,
14
, pp.
595
612
.
79.
Hiriyannaiah
,
S.
, and
Mocko
,
G. M.
,
2008
, “
Information Management Capabilities of MDO Frameworks
,”
ASME
Paper No. DETC2008-49934.10.1115/DETC2008-49934
80.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Multidiscip. Optimization
,
14
(
1
), pp.
1
23
.10.1007/BF01197554
81.
Lovasz
,
E. C.
,
2012
,
Mechanisms, Transmissions, and Applications
,
Springer
London, UK
.10.1007/978-94-007-2727-4
82.
Shigley
,
J. E.
,
Mischke
,
C. R.
, and
Budynas
,
R. G.
,
2004
,
Mechanical Engineering Design
,
McGraw-Hill
.
83.
Lee
,
D.
,
Kwon
,
K. E.
,
Lee
,
J.
,
Jee
,
H.
,
Yim
,
H.
,
Cho
,
S. W.
,
Shin
,
J.-G.
, and
Lee
,
G.
,
2009
, “
Tolerance Analysis Considering Weld Distortion by Use of Pregenerated Database
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041012
.10.1115/1.3160319
84.
Pierre
,
L.
,
Teissandier
,
D.
, and
Nadeau
,
J. P.
,
2009
, “
Integration of Thermomechanical Strains Into Tolerancing Analysis
,”
Int. J. Interact. Des. Manuf.
,
3
(
4
), pp.
247
263
.10.1007/s12008-009-0058-8
85.
Shiu
,
B.
,
Apley
,
D. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2003
, “
Tolerance Allocation for Compliant Beam Structure Assemblies
,”
IIE Trans.
,
35
(
4
), pp.
329
342
.10.1080/07408170304376
86.
Makelainen
,
E.
,
Ramseier
,
Y.
,
Salmensuu
,
S.
,
Heilala
,
J.
,
Voho
,
P.
, and
Vaatainen
,
O.
,
2001
, “
Assembly Process Level Tolerance Analysis for Electromechanical Products
,” Proceedings of the IEEE International Symposium on Assembly and Task Planning (
ISATP2001
), Fukuoka, May 28–29, pp.
405
410
.10.1109/ISATP.2001.929068
87.
Taguchi
,
G.
,
1989
,
Introduction to Quality Engineering
,
Asian Productivity Organization, Unipub
,
New York
.
88.
Phadke
,
M. S.
,
1989
,
Quality Engineering Using Robust Design
,
Prentice Hall
.
89.
Feigenbaum
,
A. V.
,
2012
,
Total Quality Control, 4th ed.: Achieving Productivity, Market Penetration, and Advantage in the Global Economy
,
McGraw-Hill
.
90.
Dong
,
Z.
,
Hu
,
W.
, and
Xue
,
D.
,
1994
, “
New Production Cost-Tolerance Models for Tolerance Synthesis
,”
ASME J. Eng. Ind.
,
116
(
2
), pp.
199
205
.10.1115/1.2901931
91.
Dong
,
Z.
, and
Soom
,
A.
,
1990
, “
Automatic Optimal Tolerance Design for Related Dimension Chains
,”
Manuf. Rev.
,
3
, pp.
262
271
.
92.
Pearn
,
W. L.
, and
Kotz
,
S.
,
2006
,
Encyclopedia and Handbook of Process Capability Indices: A Comprehensive Exposition of Quality Control Measures (Series on Quality, Reliability and Engineering Statistics)
,
World Scientific Publishing
,
Hackensack, NJ
.
93.
Feng
,
C. X.
, and
Kusiak
,
A.
,
1997
, “
Robust Tolerance Design With the Integer Programming Approach
,”
ASME. J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
603
610
.10.1115/1.2831193
94.
Nocedal
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer Verlag
,
New York
.10.1007/b98874
95.
Voß
,
S.
,
2001
,
Meta-Heuristics: The State of the Art, in Local Search for Planning and Scheduling
,
Springer
, pp.
1
23
.
96.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Evol. Comput., Trans.
,
3
(
4
), pp.
257
271
.10.1109/4235.797969
97.
Bäck
,
T.
,
1996
,
Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms
,
Oxford University Press
.
98.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1995
, “
An Overview of Evolutionary Algorithms in Multiobjective Optimization
,”
Evol. Comput.
,
3
(
1
), pp.
1
16
.10.1162/evco.1995.3.1.1
99.
Forouraghi
,
B.
,
2002
, “
Worst-Case Tolerance Design and Quality Assurance Via Genetic Algorithms
,”
J. Optim. Theory Appl.
,
113
(
2
), pp.
251
268
.10.1023/A:1014826824323
100.
Kumar
,
M. S.
, and
Kannan
,
S.
,
2007
, “
Optimum Manufacturing Tolerance to Selective Assembly Technique for Different Assembly Specifications by Using Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
32
(
5
), pp.
591
598
.10.1007/s00170-005-0337-x
101.
Leary
,
M.
,
Mazur
,
M.
,
Mild
,
T.
, and
Subic
,
A.
,
2011
,
Benchmarking and Optimisation of Automotive Seat Structures
.
102.
Williams
,
J. A.
,
1994
,
Engineering Tribology
,
Cambridge University Press
.
103.
Adams
,
B. M.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Gay
,
D. M.
,
Haskell
,
K.
,
Hough
,
P. D.
, and
Swiler
,
L. P.
,
2011
, “
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis
,” Sandia Technical Report No. SAND2010-2183.
104.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
You do not currently have access to this content.