The objective of this paper is to introduce and demonstrate a new method for the topology optimization of compliant mechanisms. The proposed method relies on exploiting the topological derivative, and exhibits numerous desirable properties including: (1) the mechanisms are hinge-free; (2) mechanisms with different geometric and mechanical advantages (GA and MA) can be generated by varying a single control parameter; (3) a target volume fraction need not be specified, instead numerous designs, of decreasing volume fractions, are generated in a single optimization run; and (4) the underlying finite element stiffness matrices are well-conditioned. The proposed method and implementation are illustrated through numerical experiments in 2D and 3D.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Gianchandani
,
Y.
,
1994
, “
A Methodical Approach to the Design of Compliant Micromechanisms
,”
Solid State Sensor and Actuator Workshop
, pp.
189
192
.
3.
Kota
,
S.
,
Joo
,
J.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integrated Circuits and Signal Processing
,
29
(
1–2
), pp.
7
15
.10.1023/A:1011265810471
4.
Kota
,
S.
,
Lu
,
K. J.
,
Kriener
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
,
2005
, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
981
989
.10.1115/1.2056561
5.
Ma
,
R.
,
Slocum
,
A. H.
,
Sung
,
E.
,
Bean
,
J. F.
, and
Culpepper
,
M. L.
,
2013
, “
Torque Measurement With Compliant Mechanisms
,”
ASME J. Mech. Des.
,
135
(
3
), p.
034502
.10.1115/1.4023326
6.
Ananthasuresh
,
G. K.
, and
Howell
,
L. L.
,
2005
, “
Mechanical Design of Compliant Microsystems—A Perspective and Prospects
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
736
738
.10.1115/1.1900150
7.
Albanesi
,
A. E.
,
Fachinotti
,
V. D.
, and
Pucheta
,
M. A.
,
2010
, “
A Review on Design Methods for Compliant Mechanisms
,”
Mec. Comput., Struct. Mech. (A)
,
XXIX
(
3
), pp.
59
72
.
8.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
31
(
2
), pp.
151
179
.10.1081/SME-120020289
9.
Cardoso
,
E. L.
, and
Fonseca
,
J.
,
2004
, “
Strain Energy Maximization Approach to the Design of Fully Compliant Mechanisms Using Topology Optimization
,”
Lat. Am. J. Solids Struct.
,
1
(
3
), pp.
263
275
.
10.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
(
1
), pp.
36
49
.10.1007/s001580050084
11.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimisation
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.10.1115/1.2826242
12.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
494
524
.10.1080/08905459708945415
13.
Wang
,
M. Y.
, and
Shikui
,
C.
,
2009
, “
Compliant Mechanism Optimization: Analysis and Design With Intrinsic Characteristic Stiffness
,”
Mech. Based Des. Struct. Mach.: Int. J.
,
37
(
2
), pp.
183
200
.10.1080/15397730902761932
14.
Lin
,
J.
,
2010
, “
A New Multi-Objective Programming Scheme for Topology Optimization of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
241
255
.10.1007/s00158-008-0355-z
15.
Rahmatalla
,
S.
, and
Swan
,
C. C.
,
2005
, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Meth. Eng.
,
62
(
12
), pp.
1579
1605
.10.1002/nme.1224
16.
Ansola
,
R.
,
Vegueria
,
E.
,
Maturana
,
A.
, and
Canales
,
J.
,
2010
, “
3D Compliant Mechanisms Synthesis by a Finite Element Addition Procedure
,”
Finite Elem. Anal. Des.
,
46
(
9
), pp.
760
769
.10.1016/j.finel.2010.04.006
17.
Luo
,
Z.
,
2005
, “
Compliant Mechanism Design Using Multi-Objective Topology Optimization Scheme of Continuum Structures
,”
Struct. Multidiscip. Optim.
,
30
(
2
), pp.
142
154
.10.1007/s00158-004-0512-y
18.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Meth. Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.10.1016/S0045-7825(00)00278-4
19.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2013
, “
A Metric to Evaluate and Synthesize Distributed Compliant Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011004
.10.1115/1.4007926
20.
Mehta
,
V.
,
Frecker
,
M.
, and
Lesieutre
,
G. A.
,
2012
, “
Two-Step Design of Multicontact-Aided Cellular Compliant Mechanisms for Stress Relief
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121001
.10.1115/1.4007694
21.
Deepak
,
S.
,
Dinesh
,
M.
,
Sahu
,
D.
, and
Ananthasuresh
,
G. K.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.10.1115/1.2959094
22.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Application
, 2nd ed.,
Springer, Berlin, Heidelberg, Germany
.
23.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
217
237
.10.1007/s00158-007-0217-0
24.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods
,
Cambridge University Press, Cambridge, UK
.
25.
Wang
,
M. Y.
,
Chen
,
S. K.
,
Wang
,
X. M.
, and
Mei
,
Y. L.
,
2005
, “
Design of Multi-Material Compliant Mechanisms Using Level Set Methods
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
941
956
.10.1115/1.1909206
26.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Meth. Appl. Mech. Eng.
,
199
(
45–48
), pp.
2876
2891
.10.1016/j.cma.2010.05.013
27.
Ansola
,
R.
,
Vegueria
,
E.
,
Canales
,
J.
, and
Tarrago
,
J. A.
,
2007
, “
A Simple Evolutionary Topology Optimization Procedure for Compliant Mechanism Design
,”
Finite Elem. Anal. Des.
,
44
(
1–2
), pp.
53
62
.10.1016/j.finel.2007.09.002
28.
Frecker
,
M. I.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1999
, “
Topology Optimization of Compliant Mechanisms With Multiple Outputs
,”
Struct. Multidiscip. Optim.
,
17
(
4
), pp.
269
278
.10.1007/BF01207003
29.
Poulsen
,
T. A.
,
2002
, “
A New Scheme for Imposing a Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Meth.
,
53
(
3
), pp.
567
582
.10.1002/nme.285
30.
Shield
,
R. T.
, and
Prager
,
W.
,
1970
, “
Optimal Structural Design for Given Deflection
,”
J. Appl. Math. Phys.
,
ZAMP21
, pp.
513
523
.10.1007/BF01587681
31.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
,
8
(
1
), pp.
42
51
.10.1007/BF01742933
32.
Novotny
,
A. A.
,
Feijóo
,
R. A.
,
Padra
,
C.
, and
Taroco
,
E.
,
2005
, “
Topological Derivative for Linear Elastic Plate Bending Problems
,”
Control Cybern.
,
34
(
1
), pp.
339
361
.
33.
Novotny
,
A. A.
,
Feijoo
,
R. A.
, and
Taroco
,
E.
,
2007
, “
Topological Sensitivity Analysis for Three-Dimensional Linear Elasticity Problem
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
41–44
), pp.
4354
4364
.10.1016/j.cma.2007.05.006
34.
Novotny
,
A. A.
,
2006
, “
Topological-Shape Sensitivity Method: Theory and Applications
,”
Solid Mech. Appl.
,
137
, pp.
469
478
.10.1007/1-4020-4752-5_45
35.
Sokolowski
,
J.
, and
Zochowski
,
A.
,
1999
, “
On Topological Derivative in Shape Optimization
,”
SIAM J. Control Optim.
,
37
(
4
), pp.
1251
1272
.10.1137/S0363012997323230
36.
Céa
,
J.
,
Garreau
,
S.
,
Guillaume
,
P.
, and
Masmoudi
,
M.
,
2000
, “
The Shape and Topological Optimization Connection
,”
Comput. Meth. Appl. Mech. Eng.
,
188
(
4
), pp.
713
726
.10.1016/S0045-7825(99)00357-6
37.
Turevsky
,
I.
,
Gopalakrishnan
,
S. H.
, and
Suresh
,
K.
,
2009
, “
An Efficient Numerical Method for Computing the Topological Sensitivity of Arbitrary Shaped Features in Plate Bending
,”
Int. J. Numer. Meth. Eng.
,
79
(
13
), pp.
1683
1702
.10.1002/nme.2637
38.
Turevsky
,
I.
, and
Suresh
,
K.
,
2007
, “
Generalization of Topological Sensitivity and its Application to Defeaturing
,”
ASME
Paper No. DETC2007-35353. 10.1115/DETC2007-35353
39.
Gopalakrishnan
,
S. H.
, and
Suresh
,
K.
,
2008
, “
Feature Sensitivity: A Generalization of Topological Sensitivity
,”
Finite Elem. Anal. Des.
,
44
(
11
), pp.
696
704
.10.1016/j.finel.2008.03.006
40.
Novotny
,
A. A.
,
Feijoo
,
R. A.
,
Taroco
,
E.
, and
Padra
,
C.
,
2003
, “
Topological Sensitivity Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
192
(
7–8
), pp.
803
829
.10.1016/S0045-7825(02)00599-6
41.
Choi
,
K. K.
, and
Kim
,
N. H.
,
2005
,
Structural Sensitivity Analysis and Optimization I: Linear Systems
,
Springer
,
New York
.
42.
Tortorelli
,
D. A.
, and
Zixian
,
W.
,
1993
, “
A Systematic Approach to Shape Sensitivity Analysis
,”
Int. J. Solids Struct.
,
30
(
9
), pp.
1181
1212
.10.1016/0020-7683(93)90012-V
43.
Feijoo
,
R. A.
,
Novotny
,
A. A.
,
Taroco
,
E.
, and
Padra
,
C.
,
2005
, “
The Topological-Shape Sensitivity Method in Two-Dimensional Linear Elasticity Topology Design
,”
Applications of Computational Mechanics in Structures and Fluids
,
CIMNE, Rio de Janeiro, Brazil
.
44.
Norato
,
J. A.
,
Bendsoe
,
M. P.
,
Haber
,
R. B.
, and
Tortorelli
,
D. A.
,
2007
, “
A Topological Derivative Method for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
375
386
.10.1007/s00158-007-0094-6
45.
Suresh
,
K.
,
2013
, “
Efficient Generation of Large-Scale Pareto-Optimal Topologies
,”
Struct. Multidiscip. Optim.
,
47
(
1
), pp.
49
61
.10.1007/s00158-012-0807-3
46.
Suresh
,
K.
, and
Takalloozadeh
,
M.
,
2013
, “
Stress-Constrained Topology Optimization: A Topological Level-Set Approach
,”
Struct. Multidiscip. Optim.
,
48
(
2
), pp.
295
309
.10.1007/s00158-013-0899-4
47.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2005
,
The Finite Element Method for Solid and Structural Mechanics
,
Elsevier, Oxford
.
48.
Wang
,
S.
,
Sturler
,
E. D.
, and
Paulino
,
G.
,
2007
, “
Large-Scale Topology Optimization Using Preconditioned Krylov Subspace Methods With Recycling
,”
Int. J. Numer. Meth. Eng.
,
69
(
12
), pp.
2441
2468
.10.1002/nme.1798
49.
Augarde
,
C. E.
,
Ramage
,
A.
, and
Staudacher
,
J.
,
2006
, “
An Element-Based Displacement Preconditioner for Linear Elasticity Problems
,”
Comput. Struct.
,
84
(
31–32
), pp.
2306
2315
.10.1016/j.compstruc.2006.08.057
50.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
,
SIAM, Philadelphia, PA
.10.1137/1.9780898718003
51.
Stanford
,
B.
, and
Beran
,
P.
,
2012
, “
Optimal Compliant Flapping Mechanism Topologies With Multiple Load Cases
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051007
.10.1115/1.4006438
You do not currently have access to this content.