A new reliability analysis method is proposed for time-dependent problems with explicit in time limit-state functions of input random variables and input random processes using the total probability theorem and the concept of composite limit state. The input random processes are assumed Gaussian. They are expressed in terms of standard normal variables using a spectral decomposition method. The total probability theorem is employed to calculate the time-dependent probability of failure using time-dependent conditional probabilities which are computed accurately and efficiently in the standard normal space using the first-order reliability method (FORM) and a composite limit state of linear instantaneous limit states. If the dimensionality of the total probability theorem integral is small, we can easily calculate it using Gauss quadrature numerical integration. Otherwise, simple Monte Carlo simulation (MCS) or adaptive importance sampling are used based on a Kriging metamodel of the conditional probabilities. An example from the literature on the design of a hydrokinetic turbine blade under time-dependent river flow load demonstrates all developments.

References

References
1.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
.10.1115/1.4002200
2.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost and Preventive Maintenance Using Time-Dependent Reliability
,”
Adv. Mater. Res.
,
118–120
(
10
), pp.
10
16
.10.4028/www.scientific.net/AMR.118-120.10
3.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Saf. Syst.
,
84
(
1
), pp.
75
86
.10.1016/j.ress.2003.10.005
4.
Rice
,
S. O.
,
1954
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
[Republished in: Wax, N., ed., 1954, Selected Papers on Noise and Stochastic Processes, Dover, New York].10.1002/j.1538-7305.1944.tb00874.x
5.
Rackwitz
,
R.
,
1998
, “
Computational Techniques in Stationary and NonStationary Load Combination—A Review and Some Extensions
,”
J. Struct. Eng.
,
25
(
1
), pp.
1
20
.
6.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
356
362
.10.1080/15732470701270058
7.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
.10.1115/1.4003539
8.
Savage
,
G. J.
, and
Son
,
Y. K.
,
2009
, “
Dependability-Based Design Optimization of Degrading Engineering Systems
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011002
.10.1115/1.3013295
9.
Son
,
Y. K.
, and
Savage
,
G. J.
,
2007
, “
Set Theoretic Formulation of Performance Reliability of Multiple Response Time-Variant Systems due to Degradations in System Components
,”
Qual. Reliab. Eng. Int.
,
23
(
2
), pp.
171
188
.10.1002/qre.783
10.
Singh
,
A.
, and
Mourelatos
,
Z. P.
,
2010
, “
On the Time-Dependent Reliability of Non-Monotonic, Non-Repairable Systems
,”
SAE Int. J. Mater. Manuf.
,
3
(
1
), pp.
425
444
.10.4271/2010-01-0696
11.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071003
.10.1115/1.4023925
12.
Hu
,
Z.
,
Li
,
H.
,
Du
,
X.
, and
Chandrashekhara
,
K.
,
2012
, “
Simulation-Based Time-Dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades
,”
Struct. Multidiscip. Optim.
,
47
(
5
), pp.
765
781
.10.1007/s00158-012-0839-8
13.
Li
,
J.
, and
Mourelatos
,
Z. P.
,
2009
, “
Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071009
.10.1115/1.3149842
14.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renewable Energy
,
48
, pp.
251
262
.10.1016/j.renene.2012.05.002
15.
Madsen
,
P. H.
, and
Krenk
,
S.
,
1984
, “
An Integral Equation Method for the First Passage Problem in Random Vibration
,”
ASME J. Appl. Mech.
,
51
(
3
), pp.
674
679
.10.1115/1.3167691
16.
Singh
,
A.
, and
Mourelatos
,
Z. P.
,
2010
, “
Time-Dependent Reliability Estimation for Dynamic Systems Using a Random Process Approach
,”
SAE Int. J. Mater. Manuf.
,
3
(
1
), pp.
339
355
.10.4271/2010-01-0644
17.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2011
, “
Time-Dependent Reliability of Random Dynamic Systems Using Time-Series Modeling and Importance Sampling
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
929
946
.10.4271/2011-01-0728
18.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probability in High Dimensions Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.10.1016/S0266-8920(01)00019-4
19.
Au
,
S. K.
, and
Beck
,
J. L.
,
2003
, “
Subset Simulation and its Application to Seismic Risk Based on Dynamic Analysis
,”
J. Eng. Mech.
,
129
(
8
), pp.
901
917
.10.1061/(ASCE)0733-9399(2003)129:8(901)
20.
Beck
,
J. L.
, and
Au
,
S. K.
,
2002
, “
Bayesian Updating of Structural Models and Reliability Using Markov Chain Monte Carlo Simulation
,”
J. Eng. Mech.
,
128
(
4
), pp.
380
391
.10.1061/(ASCE)0733-9399(2002)128:4(380)
21.
Ching
,
J.
,
Beck
,
J. L.
, and
Au
,
S. K.
,
2005
, “
Reliability Estimation for Dynamic Systems Subject to Stochastic Excitation Using Subset Simulation With Splitting
,”
Comput. Meth. Appl. Mech. Eng.
,
194
(
12–16
), pp.
1557
1579
.10.1016/j.cma.2004.05.028
22.
Wang
,
Z.
,
Mourelatos
,
Z. P.
,
Li
,
J.
,
Baseski
,
I.
, and
Singh
,
A.
,
2014
, “
Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061008
.10.1115/1.4027162
23.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.10.1115/1.4007931
24.
Chen
,
J. B.
, and
Li
,
J.
,
2007
, “
The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures With Uncertain Parameters
,”
Struct. Saf.
,
29
(
2
), pp.
77
93
.10.1016/j.strusafe.2006.02.002
25.
Li
,
C. C.
, and
Kiureghian
,
A. D.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.10.1061/(ASCE)0733-9399(1993)119:6(1136)
26.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, eds,
1965
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
,
Dover Publications
,
New York
.
27.
Melchers
,
R. E.
,
1999
,
Structural Reliability Analysis and Prediction
,
2nd ed.
,
Wiley
,
Chichester, West Sussex, England
.
28.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
E.
Nikolaidis
,
2007
, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.10.1115/1.2779884
29.
Martin
,
O. L. H.
,
2008
,
Aerodynamics of Wind Turbines
,
2nd ed.
,
Earthscan
,
Sterling, VA
.
30.
Ye
,
Q.
,
Li
,
W.
, and
Sudjianto
,
A.
,
2003
, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plann. Inference
,
90
(
1
), pp.
145
159
.10.1016/S0378-3758(00)00105-1
31.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
,
2005
,
Structural Reliability Methods
,
2nd ed.
(published online).
32.
Wehrwein
,
D.
, and
Mourelatos
,
Z. P.
,
2009
, “
Optimization of Engine Torque Management Under Uncertainty for Vehicle Driveline Clunk Using Time-Dependent Metamodels
,”
ASME J. Mech. Des.
,
131
(
5
), p.
051001
.10.1115/1.3086788
You do not currently have access to this content.